1996

Philips
Semiconductors

16-bit 80C51XA

Microcontrollers
(eXtended Architecture)

(Y

DATA HANDBOOK IC25

PHILIPS!

\E

PHILIPS

QUALITY ASSURED

Our quality system focuses on the continuing high quality of our
components and the best possible service for our customers. We have
athree-sided quality strategy: we apply a system of total quality control
and assurance; we operate customer-oriented dynamic improvement
programmes; and we promote a partnering relationship with our
customers and suppliers.

PRODUCT SAFETY

In striving for state-of-the-art perfection, we continuously improve
components and processes with respect to environmental demands.
Our components offer no hazard to the environment in normal use
when operated or stored within the limits specified in the data sheet.

Some components unavoidably contain substances that, if exposed by
accident ormisuse, are potentially hazardous to health. Users of these
components are informed of the danger by warning notices in the data
sheets supporting the components. Where necessary the warning
notices also indicate safety precautions to be taken and disposal
instructions to be followed. Obviously users of these components, in
general the set-making industry, assume responsibility towards the
consumer with respectto safety matters and environmental demands.

All used or obsolete components should be disposed of according to
the regulations applying at the disposal location. Depending on the
location, electronic components are considered to be ‘chemical’,
‘special’ orsometimes ‘industrial’ waste. Disposal as domestic waste is
usually not permitted.

16-bit 80C51XA (eXtended Architecture)
Microcontrollers Data Handbook

CONTENTS

page

SECTION 1 GENERAL INFORMATION 5
SECTION 2 XA USER GUIDE 31
SECTION 3 XA FAMILY DERIVATIVES 313
SECTION 4 FUTURE DERIVATIVES 415
SECTION 5 APPLICATION NOTES 421
SECTION 6 DEVELOPMENT SUPPORT TOOLS 509
SECTION 7 PACKAGE INFORMATION 591

APPENDIXA DATA HANDBOOK SYSTEM 598

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make
changes, without notice, in the products, including circuits, standard cells, and/or software, described
or contained herein in order to improve design and/or performance. Philips Semiconductors assumes
no responsibility or liability for the use of any of these products, conveys no license or title under any
patent, copyright, or mask work right to these products, and makes no representations or warranties
that these products are free from patent, copyright, or mask work right infringement, unless otherwise
specified. Applications that are described herein for any of these products are for illustrative purposes
only. Philips Semiconductors makes no representation or warranty that such applications will be suit-
able for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed
for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors
and Philips Electronics North America Corporation Product can reasonably be expected to resultin a
personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers
using or selling Philips Semiconductors and Philips Electronics North America Corporation Products
for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors
and Philips Electronics North America Corporation for any damages resulting from such improper use
or sale.

Philips Semiconductors and Philips Electronics North America Corporation register
eligible circuits under the Semiconductor Chip Protection Act.

© Copyright Philips Electronics North America Corporation, 1996

All rights reserved.
Printed in U.S.A.

Philips Semiconductors

March 1996

Preface

XA Microcontrollers from Philips Semiconductors

Philips Semiconductors offers a wide range of microcontrollers based on the 8048,
80C51, and now the XA architectures. The XA is a new architecture that was
developed by Philips Semiconductors in response to the market need for higher
performance than what can be obtained from the 8-bit 80C51 and retained
compatibility with the 80C51 designed-in architecture. The XA successfully
addresses both of these needs. It is compatible with the 80C51 at the source code
level. All of the internal registers and operating modes of the 80C51 are fully
supported within the XA, as are all of the 80C51 instructions. Yet compatibility with
the 80C51 has in no way hindered the performance of the XA, a very high
performance 16-bit architecture. The XA's performance is 3 to 4 times faster than
that of the most popular 16 bit architectures and 10 to 100 times faster than the
80C51.

If you use or are familiar with the 80C51 and need higher performance, the XA is
the architecture for you. You will find it very easy to understand. Rather than having
to learn its programmer’s model, you will find that you already know it, and, better,
are very familiar with it. You will be able to focus on the enhanced features of the
XA and quickly move your design to much higher performance. You will also notice
that the features on the XA, in many cases, exceed what you need today. We have
designed the XA so that it will meet your needs not only today but well into the
future; you will not need to look for another architecture for many years to come.

As Philips Semiconductors has done with the 8048 and 80C51, we will develop the
XA into a broad family of derivatives. Advance information has been included in this
handbook that covers the first two of these. It is our plan to introduce 3 to 4 XA
derivatives in 1996 and 5 to 8 per year after that. In addition to this, we will continue
to move the XA into Philips Semiconductors’ most advanced processes and we
have plans to increase the clocking frequency of the architecture to over 100MHz
(greater than 30MIPS execution rate).

Philips Semiconductors offers you one of the industry’s widest selections of
microcontrollers. The XA architecture is an extension of this strategy that gives you
the ability to easily upgrade your designs to very high performance with the only
16-bit, 80C51-compatible microcontroller available on the market.

Philips Semiconductors

Section 1
General Information

CONTENTS

Philips Semiconductors
P T S

CONTENTS

1C25: 16-bit 80C51XA (eXtended Architecture) Microcontrollers

PrefaCe . . 3

Section 1 - General Information

Contents 7
Ordering information 11
Quality ... e 12
ProductStatuso NN 13
XA 00IS INBCAIT | . . 14
Microcontroller bulletin boards 15
Philips Fax-On-Demand SyStem 16
CMOS and NMOS 8-bit microcontroller family 17
CMOS 16-bit microcontroller family e e e e 25
80C51 microcontroller family features guIde 26
Handiing MOS deVICESttt e e e e e e e e e 30
Section 2 - XA User Guide

1 The XA Family — High Performance, Enhanced Architecture 80C51-Compatible 16-Bit CMOS Microcontrollers 33
T INrOUCHION e e e 33

1.2 Architectural Features of XA e 34

2 Architectural OVerVIeW e e 35
2.1 INtrOdUCHION . ..o e e e 35

2.2 Memory Organizationt 35
2,21 RegiSter File .. s 35

2.22 DataMemory 36

2,23 €0de MEBMOIY ... et e 38

2.2.4 Special Function Registers 39

2.8 CPU L e e 40
231 CPU BIOCKS ... e 41

2.4 Task Managementt 45

2.5 INSIUCHON St . . 46
2.5.1 INStUCHON SYNtaX . . oo 46

2.5.2 Instruction Set SUMMANY i i i e 49

2.6 EXIErNal BUS e e 52
2.6.1 External BuS Signals 52

2.6.2 BUS CoNfIQUIAtioN e s 52

2.6.3 Bus Timing 53

2.7 PO st 54

2.8 Peripherals s 55

2.9 80C51 Compaltibility e 55
2.9.1 Software Compatibility e 56

2.9.2 Hardware Compatibility ot e 56

3 XA Memory Organizationo. i e 58
Bl INtrOdUCHION .o e e e e 58

3.2 The XA RegiSter File ... e e e e 58
3.2.1 Register File OVEIVIEW e e 58

3.3 The XA MEMOIY SPACESttt ettt et et e e et e e e e e e e et e e e e 61
3.3.1 Bytes, Words, and Alignment 62

B4 Dat@aMBMOTY ..t e 62
3.4.1 Alignmentin Data MemoOry 62

3.4.2 Externaland Internal Overlap 62

3.4.3 Useand Read/Wrte ACCESSottt e e e e e e e 63

3.4.4 DataMemory AdAressingttt e e e 63

3.5 €00 MBMOTY ..t e e 66
3.5.1 Alignmentin Code Memory 67

3.5.2 External and Internal Overlap 67

353 ACCESS ... 68

3.6 Special Function Registers (SFRS)t e 68

3.7 Summary of Bit AdAresSINGt e 71

March 1996 7

Philips Semiconductors

CONTENTS

4 CPUOIganization ittt e 72
41 Introduction ... e 72
4.2 Program STatus WOTAttt ittt e e 73

421 CPUSHAIUS FIAGS - .« vttt ittt ettt ettt et e e e e 73
422 Operating Mode FIagsot 75
4.2.3 Program Writes t0 PSW 75
4.2.4 PSW INtANZAONttt et e ettt e e e e e 76
4.3 System Configuration ReGISTEr e 76
4.3.1 XA Large-Memory Model DesCription e 77
4.3.2 XA Page 0 Model DeSCrIPHONttt e e e 77
4.4 Reset 78
4.41 ResetSequence Overview 78
442 Power-upReset 79
4.4.3 Internal Reset Sequence 79
4.4.4 XA Configuration at Reset 80
4.45 The Reset Exception Interrupt .. 81
4.4.6 STartup COGR 82
4.4.7 Reset Interactions with XA Subsystems e 82
4.4.8 AnExternal Reset CirCUIt e 82
R @ o1 = o 83
4.6 POWET CONMIOL . ..ottt ettt ettt e e 83
4.8.1 1dIE MOGE . . .ottt e e e e e 84
4.6.2 Power-DOWNMOTEot 84
A7 XA S ACKS ..o e 85
471 The Stack Pointers e 85
4.7.2 PUSH and POP .. e 85
4.7.3 Stack-Based AdAreSSINGttt et e 87
A7.4 StaCK EITOrS ... e 87
4.7.5 Stack Initialization e 88
4.8 XA IMOITUDES . .. 89
4.8.1 Interrupt Type Detailed Descriptionso i e 90
4.8.2 Interrupt Service Data Elements 94
4.9 Trace Mode DEDUGGING . . .« e .ttt ittt et e et et e e e e e e e e e e e e 96
4.9.1 Trace Mode Operationt e 97
4.9.2 Trace Mode Initialization and Deactivation 98
5 Realtime Multitasking 99
5.1 Assist for Multitasking in XA .. 99
5.1.1 Dual stack approach . e 99
5.1.2 RegisterBanks 100
5.1.3 Interrupt Latency and Overhead . 100
5.1.4 Protection...................... 100

6 Instruction Set and AddresSsSingttt 103
6.1 AddressingModes e e e e et a e 103
6.2 Description of the Modes e 104

6.2.1 Register AdAressingt 104
6.2.2 IndireCt AdAresSINgottt e e e e 105
6.2.3 Indirect-Offset AQAreSSINgttt e e 106
6.2.4 DireCt AdAreSSING . . .o oottt ettt e e e e e e e e e e 107
6.2.5 SFRAAAreSSING 108
6.2.6 Immediate AdAressingiu it e 108
6.2.7 Bit AdAressing e e 109
6.3 Relative Branching and JUmMPs 110
6.4 Data TyPes N XA e e 111
6.5 INStruction Set OVEIVIEW e M
6.6 Summary of lllegal Operand Combinationsonthe XA0 e 275

7 External Bus 276

7.3 External Bus SIgNals 276
7.1.1 PSEN = Program Store ENADIEi.iin ettt et e et e et e 276
732 RD = REAG . ettt ettt e e e e 276

March 1996 8

Philips Semiconductors

CONTENTS

713 WRE = Write LOW Byte e e 276

744 WRH = Write High Byte e 276

7.1.5 ALE — Address Latch Enableo 276

7.1.6 Address Lines 277

7.1.7 Multiplexed Address and Data Lines 277

718 WAIT-Wait. ..., 277

7.1.9 EA-External ACCESScoo. .. 277

7.1.10 BUSW-BusWidth 278

7.2 BusConfigurationl 278

7.2.1 8-Bitand 16-Bit Data Bus Widths 278

7.2.2 Typical External Device Connections 280

7.3 BusTiming and SeqQUeNCES e 282

7.3 Code MEMOTY 282

7.3.2 Data MemoOry ... 284

7.3.3 Reset Configuration e 290

A S o 290

T4 O POM ACCESS .. ot 290

7.4.2 PortOutput Configurations 291

7.4.3 Quasi-Bidirectional Output 292

7.4.4 Reset State and Initialization 295

7.4.5 Sharing of I/O Ports with On-Chip Peripherals e 295

8 Special Function Register BUs e 296

8.1 Implementation and Possible Enhancements 296

8.2 Read-Modify-Write LOCKOUL e 297

9 80C51 Compatibility 298

9.1 Compatibility CONSIHErationS ittt e et 298

9.1.1 Memory Map and AdAressingt e e 298

9.1.2 Interrupt and Exception ProCessingt e 300

9.1.3 ON-Chip Peripherals 301

914 BUs INterace ... o e 301

9.1.5 INStrUCHON St . ..o 302

9.2 Code Translationo . e 305

9.3 New Instructions On the XA ... e e e 308

Section 3 — XA Family Derivatives

XA-G1 CMOS single-chip 16-bit microcontroller 315

XA-G2 CMOS single-chip 16-bit MICrocoNtroller e 348

XA-G3 CMOS single-chip 16-bit MiCrocontroller e 381
Section 4 — Future Derivatives

XA-C3 CMOS single-chip 16-bit microcontroller with CAN/DeviceNet controller iiiiiiiiiiennn. 417

XA-S3 Single-chip 16-bit MIiCrocontroller 418
Section 5 — Application Notes

AN700 Digital filtering USiNg XA ... e 423

AN701 SP floating point math With XA ... 428

AN702 High level language supportin XA 451

AN703 XA benchmark versus the architectures 68000, 80C196, and 80C51ouiiiiitiiee i, 455

AN704 An upward migration path for the 80C51: the Philips XA architecture 479

AN705 XA benchmark vs. the MCS251 e e 487

March 1996 9

Philips Semiconductors

CONTENTS

Section 6 — Development Support Tools

XAT00IS INECANT . . . o oottt ettt ettt et e e e e e e e 510
Advin Systems Inc. PILOT-U40 Universal Programmer ittt 511
Aisys Ltd. DriveWay™-XA Device Drivers Code Generation Tool 512
Archimedes Software, Inc. IDE-8051XA Archimedes Integrated Development Environment (IDE) for 8051XA 513
Ashling Microsystems Ltd. Ultra-51XA Microprocessor Development System, 515
BP Microsystems
BP-1200 Universal DeviCe Programmerttt it e et e et e e e e e s 520
BP-2100 Concurrent Programming System™ 526
BP-4100 Automated Programming SYStEmMttt e e e 528
BSO/Tasking Total Development Solution for the Philips 51XA Architecture 530
CEIBO
DS-XA IN-Circuit EMUIATOT . . . oo e e 532
XA SORWAIE TOOIS . .ttt e e e 536
CMX Company
CMX-RTX™, CMX-TINY+™, CMX-TINY™ Real-Time Multi-Tasking Operating System for Microprocessors and Microcomputers . 543
The CMX-TINY+™ RTOS KBIMNEI ..ottt ettt et e e e e e e e e e e e e 543
CMX PO PIOtO- R XM ittt e e 544
The M T T aCKE I ™M L et et e e e e e e 545
The CMXBUG™ DebUGQer e 546
Data I/O Corp. ProMaster 2500 Automated Handling System i 547
EDI Corporation Accessories for 8051-Architecture DeVICESt e 548
Embedded System Products, Inc.
3different Configurations 549
RTXC™ V3.2 LIbrary CONENTSttt ettt e e e e e e e e e e e et e e e e e e e e e 550
RTXC™ V3.2 KBINEI SBIVICESottt ittt et e et e 551
RTXC™ Real-Time KeIMel e et e e e e e et e e 553
RTXCio™ Input/Output SUDSYSTEM e e e e 557
RTXCfile™ MS-DOS Compatible File Manager e 559
Emulation Technology, Inc. XA Microcontroller Development TOOIS i 561
Franklin Software, Inc.
Software Development Tool Suites Expressly for the Philips XA ... o 563
XA51 Macro Assembler Kit e 564
XC51 C Language Compiler Kit for the Professional User 565
XDK51 Complete XA Developers Kit e 566
Future Designs, Inc. XTEND, XA Trainer & Expandable Narrative Design i 567
HI-TECH Software HI-TECH C Compiler for the Philips XA microcontroller — technical specifications 569
Hiware Hi-Cross Development System i 573
Logical Systems Corp. 51XA-G3 Programming Adapters 574
Nohau Corp. EMUL 51XA In-Circuit Emulators for the P51XA Family ... 575
Philips Semiconductors
P51XA Development Board/EMUIAtOr o 582
80C51XA Software Development TOOISttt ettt e et e e e e e e e e e s 584
Sierra Systems Sierra C™ C Compiler for the Philips XA 586
Signum Systems Corp. Universal In-Circuit Emulator for 8051/31 Series i 587
System General Universal Device Programmers i 589
Section 7 — Package Information
SOl .o e 593
LQFP44: plastic low profile quad flat package; 44 leads; body 10 x 10x 1.4 mm SOT389-1 ..o 595
PLCC44: plastic leaded chip carrier; 44 leads i SOT187-2 ..., 596
44-pin cerquad J-bend (K)packageccoouiiiiiiiiiiiiii.. T472A 597
Appendix A — Data Handbook System 598

March 1996 10

Philips Semiconductors

Ordering Information

XA PRODUCTS

Example: P51XA G3 7 KB A

Philips 80C51 eXtended Architecture

Derivative Name

L Package Code

A = Plastic Leaded Chip Carrier (PLCC)
B = Quad Flat Pack (QFP)

BD = Thin Quad Flat Pack (TQFP)

FA = Hermetic Cerdip (window)

KA = CerQuad (window)

N = Plastic Dual In-Line

L

Temperature
B=0°Cto +70°C
F =-40°C to +85°C
H =-40°C to +125°C

Speed
E=16MHz
G =20MHz
| = 24MHz
K = 30MHz

Memory Opation
0 = ROMless
3=ROM
5 = Bond-Out (emulation)
7 = EPROM/OTP
9 = FEEPROM (FLASH)

November 1995

Philips Semiconductors

General

Quality

TOTAL QUALITY MANAGEMENT

Philips Semiconductors is a Quality Company, renowned
for the high quality of our products and service. We keep
alive this tradition by constantly aiming towards one
ultimate standard, that of zero defects. This aim is guided
by our Total Quality Management (TQM) system, the
basis of which is described in the following paragraphs.

Quality assurance

Based on ISO 9000 standards, customer standards such
as Ford TQE and IBM MDQ. Our factories are certified to
1SO 9000 by external inspectorates.

Partnerships with customers

PPM co-operations, design-in agreements, ship-to-stock,
just-in-time and self-qualification programmes, and
appiication support.

Partnerships with suppliers

Ship-to-stock, statistical process control and ISO 9000
audits.

Quality improvement programme

Continuous process and system improvement, design
improvement, complete use of statistical process control,
realization of our final objective of zero defects, and
logistics improvement by ship-to-stock and just-in-time
agreements.

ADVANCED QUALITY PLANNING

During the design and development of new products and
processes, quality is built-in by advanced quality
planning. Through failure-mode-and-effect analysis the
critical parameters are detected and measures taken to
ensure good performance on these parameters. The
capability of process steps is also planned in this phase.

1995 Mar 21

PRODUCT CONFORMANCE

The assurance of product conformance is an integral part

of our quality assurance (QA) practice. This is achieved

by:

® Incoming material management through partnerships
with suppliers.

® In-line quality assurance to monitor process
reproducibility during manufacture and initiate any
necessary corrective action. Critical process steps are
100% under statistical process control.

® Acceptance tests on finished products to verify
conformance with the device specification. The test
results are used for quality feedback and corrective
actions. The inspection and test requirements are
detailed in the general quality specifications.

® Periodic inspections to monitor and measure the
conformance of products.

PRODUCT RELIABILITY

With the increasing complexity of Original Equipment
Manufacturer (OEM) equipment, components reliability
must be extremely high. Our research laboratories and
development departments study the failure mechanisms
of semiconductors. Their studies result in design rules
and process optimization for the highest built-in product
reliability. Highly accelerated tests are applied to the
product reliability evaluation. Rejects from reliability tests
and from customer complaints are submitted to failure
analysis, to result in corrective action.

CUSTOMER RESPONSES

Our quality improvement depends on joint action with our
customer. We need our customer’s inputs and we invite
constructive comments on all aspects of our performance.
Please contact our local sales representative.

RECOGNITION

The high quality of our products and services is
demonstrated by many Quality Awards granted by major
customers and international organizations.

Philips Semiconductors P rod uct Status

DEFINITIONS

Data Sheet
Identification

Product Status

Definition

Objie

F ive or in Design

This data sheet contains the design target or goal specifications for
product development. Specifications may change in any manner
without notice.

Prepr ion Product

This data sheet contains preliminary data, and supplementary data
will be published at a later date. Philips Semiconductors reserves the
right to make changes at any time without notice in order to improve
design and supply the best possible product.

Product Specification

Full Production

This data sheet contains Final Specifications. Philips
Semiconductors reserves the right to make changes at any time
without notice, in order to improve design and supply the best
possible product.

March 1996

Philips Semiconductors
-]

XA tools linecard

Telephone/Contact
n Product
North America I Europe

C Compilers

Archimedes 1-206-822-6300 Mary Sorensen SW 41.61.331.7151 Claude Vonlanthen C-51XA

BSO/Tasking 1-617-320-9400 Vaughn Orchard US 1-617-320-9400 Vaughn Orchard C—Compiler

Ceibo 1-314-830-4084 Roly Schwartzman | GE 49.6151.27505 M. Kimron C-XA

CMX Company 1-508-872-7675 Charles Behrmann | US 1-508-872-7675 Charles Behrmann Hi-Tech XAC

Hi-Tech 1-207-236-9055 Avocet - T. Taylor UK 44.1.932.829460 Computer Solutions Hi-Tech C (XA)

Franklin Software 1-408-296-8051 Siegfried Bleher US 1-408-296-8051 Siegfried Bleher XA-CD (5050)

Sierra Systems 1-510-339-1976 Larry Rosenthal US 1.510.339.1976 Larry Rosenthal Sierra C (XA)
Emulators (including Debuggers)

Ashling 1-508-366-3220 Bob Labadini IR 353.61.334466 Micheal Healy Ultra2000-XA

Cactus Logic 1-818-337-4547 Joel Lagerquist US 1.818.337.4547 Joel Lagerquist IDS

Ceibo 1-314-830-4084 Roly Schwartzman | GE 49.6151.27505 M. Kimron DS—-XA

Emulation Tech 1-408-982-0660 Joseph J. Bagliere US 1.408.982.0660 Joseph J. Bagliere Various

Nohau 1-408-866-1820 Jim Straub SW 46.40.922425 Mikael Johnsson EMUL51XA-PC
Cross Assemblers

Archimedes 1-206-822-6300 Mary Sorensen SW 41.61.331.7151 Claude Vonlanthen A-51XA

Ashling 1-508-366-3220 Bob Labadini IR 353.61.334466 Micheal Healy SDS-XA

BSO/Tasking 1-617-320-9400 Vaughn Orchard US 1-617-320-9400 Vaughn Orchard C-Compiler

Ceibo 1-314-830-4084 Roly Schwartzman | GE 49.6151.27505 M. Kimron ASM-XA

Franklin Software 1-408-296-8051 Siegfried Bleher US 1-408-296-8051 Siegfried Bleher XA-ASM (4050)

Philips/Macraigor* 1-408-991-51XA Mike Thompson US 1.408.991.5192 Mike Thompson Mcgtool
Real-Time Operating Systems

CMX Company 1-508-872-7675 Charles Behrmann US 1.508.872.7675 Charles Behrmann CMX-RTX

g;’;?:r‘:‘dgfo ducts | 1-713-561-9990 Ron Hodge US 17135169990 Ron Hodge RTXC

R&D Publications 1-913-841-1631 Customer Service US 1.913.841.1631 Customer Service Labrosse MCU/OS
Simulators & Software Generation Tools

Aisys 1-800-397-7922 Customer Service IL 972.3.9226860 Oren Katz DriveWay-XA

Archimedes 1-206-822-6300 Mary Sorensen SW 41.61.331.7151 Claude Vonlanthen SimCASE-51XA

Avocet Systems 1-207-236-9055 Jamie Arrison US 1.207.236.9055 Jamie Arrison AvCase-51XA

Ceibo 1-314-830-4084 Roly Schwartzman | GE 49.6151.27505 M. Kimron DEBUG-XA

Franklin Software 1-408-296-8051 Siegfried Bleher US 1-408-296-8051 Siegfried Bleher XA-DK (8250)

Philips/Macraigor* 1-408-991-51XA Mike Thompson US 1.408.991.5192 Mike Thompson Mcgtool
Translators (80C51-to-XA)

Ashling 1-508-366-3220 Bob Labadini IR 353.61.334466 Micheal Healy E‘;":f': S"Cr; Zé’ééx A

Ceibo 1-314-830-4084 Roly Schwartzman | GE 49.6151.27505 M. Kimron CONV-XA

Philips/Macraigor* 1-408-991-51XA Mike Thompson US 1.408.991.5192 Mike Thompson Mcgtool
Development Kits

Ceibo 1-314-830-4084 Roy Schwartzman GE 49.6151.27505 M. Kimron DB-XA

Future Designs 1-205-830-4116 Mark Hall US 1-205-830-4116 Mark Hall XTEND-G3

Philips/Macraigor 1-408-991-51XA Mike Thompson US 1.408.991.5192 Mike Thompson P51XA-DBE SD
EPROM Programmers

BP Microsystems 1-800-225-2102 Sales Department US 1.713.688.4600 Sales Department BP-1200

Ceibo 1-314-830-4084 Roly Schwartzman | GE 49.6151.27505 M. Kimron MP-51

Data I/0 Corp. 1-800-247-5700 Tech Help Desk BE 32.1.638.0808 Roland Appeltants UniSite

Philips/Macraigor 1-408-991-51XA Mike Thompson US 1.408.991.5192 Mike Thompson P51XA-DBE SD
Adapters & Sockets

EDI Corp 1-702-735-4997 Milos Krejcik US 1.702.735.4997 Milos Krejcik 44PG/44PL

Logical Systems 1-315-478-0722 Lynn Burko US 1.315.478.0722 Lynn Burko PA-XG3FC-44

* The Philips cross assembler, simulator, and translator are available on the Philips BBS.
Call 1-800-451-6644, 1-408-991-2406 or 31.40.2721102. File name XA-TOOLS.EXE

1Q0A .lan 28

14

Philips Semiconductors
L

Microcontroller bulletin boards

To better serve our customers, Philips maintains two microcontroller bulletin boards. These computer bulletin board
systems feature microcontroller newsletters, application and demonstration programs for download, and the ability
to send messages to microcontrolier application engineers.

The telephone numbers are:

North American Bulletin Board
300/1200/2400 baud 8-N-1
(800) 451-6644 (in the U.S.)
or
(408) 991-2406

European Bulletin Board
MAX 14.400 baud
Standards V32/V42/V42.bis/HST
+31 40721102

European Application Help Desk
+31 40 722749
9a.m. — 16p.m. CET (Central European Time)

Sunnyvale ROMcode Bulletin Board

We also have a ROM code bulletin board through which you can submit ROM codes. This is a closed bulletin
board for security reasons. To get an ID, contact your local sales office. The system can be accessed with a 2400,
1200, or 300 baud modem, and is available 24 hours a day.

The telephone number is:

(408) 991-3459

The following application note files are available on the Philips BBS:

App Note BBS file name App Note BBS file name Articles:

AN417 PRN256K.ZIP AN434 12CPCKB.ZIP Add text overlay to any video display
AN420 INTRUPTS.ASM AN435 11C_0S.ZIP CCl6.ZIP, MTV.ZIP
AN422 12CAPP.ZIP AN438 12C528.EXE

AN423 RS751.ASM AN439 BATTCHRG.C

AN424 WARMBOOT.ZIP AN440 BOOTSTRP.ZIP

AN425 12C8584.ZIP AN443 MAZEMOUS.ZIP

AN427 TIMERLZIP AN445 ABMOUSE.ZIP

AN428 DEMO752.ASM AN446 DUPUART.ZIP

AN429 AN429.ZIP AN447 AUTOBAUD.ZIP

AN430 MM751.ZIP EIE/AN91007 MM751B.ZIP

AN433 SLV751.ZIP EIE/AN91009 EEPRMS851.ZIP

March 1996 15

Philips Semiconductors

FAX-on-DEMAND System

1-800-282-2000

Incoming Calls
---------1
A K

1

- 2

i Press :
) v

L yonxnoﬁ the:
i number.f th

. document

DEMAND

Dlscrete

& \emBoduets:

1 select’the secohd document
' You can hang up now
What is it? Our system has a selection of the latest product data
The FAX-on-DEMAND system is a computer facsimile sheets from Philips with varying page counts. As you
system that allows customers to receive selected know, it takes approximately one minute to FAX one
documents by fax automatically. page. This isn’'t bad if the number of pages is less than

10. But if the document is 37 pages long, be ready for

i ? -
How does it work? a long transmission!

To order a document, you simply enter the document
number. This number can be obtained by asking for an Who do | contact if | have a question

index of available documents to be faxed to you the about FAX-on-DEMAND?

first time you call the system. Contact your local Philips sales office, listed inside the
back cover of this book or check the World Wide Web

- "
How is it set up? for your country’s FAX-on-DEMAND telephone

The Philips FAX-on-DEMAND system has eight number.
indexes:

Communication Products

Media (Audio, Video and Text) Products

Microcontroller Products

Logic Products

Linear Products

[6] PLD/PROM Products

Military Products

Discrete Products

1Q0R Eah 21 16

Philips Semiconductors
o e s]

CMOS and NMOS 8-bit microcontroller family

80C51 FAMILY CMOS

TYPE ROM/ RAM | SPEED | PACKAGE FUNCTIONS REMARKS PHILIPS | THIRD PARTY
EPROM (MHz) PROBES PODs
80C31 0 128 33 UART, 2 timers 87C51:QFP OM1092 8052PC(M)
80C51 4k ROM 128 33 DIL40, LCC44 package upto |+ OM1097
87C51 4k EPROM | 128 33 QFP44 16MHz (16MHz)

OM4120S | POD-C51B(N)
83C51FA 8k ROM 256 24 DIL40, LCC44 | Enhanced UART, 3 timers, PDS51FBSD | 8351FX(M)
87C51FA | 8k EPROM | 256 24 QFP44 PCA POD-C51FX(N)
83L51FA 8k ROM 256 20 DIL40, LCC44 | Enhanced UART, 3 timers, 3V to 4.5V POD-L51P(N)
87L51FA | 8k EPROM | 256 20 QFP44 PCA operation
87C51FB | 16k ROM 256 24 DIL40, LCC44 | Enhanced UART, 3 timers, PDS51FBSD | 8351FX(M)
83C51FB | 16k EPROM | 256 24 QFP44 PCA POD-C51FX(N)
87L51FB 16k ROM 256 20 DIL40, LCC44 | Enhanced UART, 3 timers, 3V to 4.5V POD-L51P(N)
83L51FB | 16k EPROM | 256 20 QFP44 PCA operation
87C51FC | 32k ROM 256 24 DIL40, LCC44 | Enhanced UART, 3 timers, 8351FX(M)
83C51FC | 32k EPROM | 256 24 QFP44 PCA POD-C51FX(N)
80C32 0 256 24 DIL40, LCC44 | UART, 3 timers OM1079 8052PC(M)
80C52 8k ROM 256 24 QFP44 OM5012 POD-C32(N)
87C52 8k EPROM | 256 24
80C54 16k ROM 256 24 DIL40, LCC44 | UART, 3 timers OoM1079 8052PC(M)
87C54 16k EPROM | 256 24 QFP44 OM5012 POD-C32(N)
80C58 32k ROM 256 24 DIL40, LCC44 | UART, 3 timers OM1079 8052PC(M)
87C58 32k EPROM | 256 24 QFP44 OM5012 POD-C32(N)
80C451 0 128 16 UART, 2 timers OM4123 83C451PC(M)
83C451 4k ROM 128 16 DIP64/LCC68 | Extended I/O POD-C451B(N)
87C451 4k EPROM | 128 16
83C504 16K ROM | 256 24 DIL40, LCC44 | 24 by 8 divide,
87C504 16K EPROM | 256 24 QFP44 2 timers
87C524 16K EPROM | 512 20 DIL40/LCC44 | UART, 3 timers OM4111 + | 83528PC(M)

Watchdog timer OM4110 + | POD-C528(N)
83C524 16k ROM 512 12 QFP44 Bit 12C OM4120S
83C528 32k ROM 512 16 DIL40/LCC44 | UART, 3 timers OM4111 + | 83C528PC(M)
87C528 |32k EPROM | 512 | 16,20 | (QFP44) Watchdog timer OM4110 +
Bit 12C OM4120S | POD-C528(N)
83CE528 32kROM 512 16 CE ONLY QFP
80C550 0 128 16 LCC44 UART, 2 timers OMS5055 + | 83550(M)
83C550 4k ROM 128 16 DIL40 8 8-bit ADC inputs, watchdog OM4110 POD-C550(N)
87C550 4k EPROM | 128 16 timer
80C552 0 256 | 16,24 |LCC68/QFP80 | UART, 2 timers OM1092 + | 83C552PC(M)
83C552 8k ROM 256 | 16,24 Timer with compare and cap- OM1095 + | POD-C552B(N)
87C552 8k EPROM | 256 16 ture, 2 PWM outputs, 8 10-bit OM4120S
ADC inputs, Byte 12C OM4128
83CE558 | 32K ROM 1K 16 QFP80 As 8xC552 with 89C: Q4-92 OM4247
89CE558 | 32K FLASH | 1K 16 PLL-oscillator 83C: Q2/3-93
80CE558 0 Auto scan ADC
80C562 0 256 16 LCC68/QFP80 | UART, 2 timers OM1092 + | 83C552PC(M)
83C562 8k ROM 256 16 Timer with compare and OM1095 +
capture, 2 PWM outputs, 8 OM4120S
8-bit ADC inputs POD-C552B(N)
80C575 0 256 16 DIL40, LCC44 |3timers 1 POD-C575(N)
83C575 8k 256 16 QFP44 Enh. UART, PCA, 4 analog
87C575 8k EPROM | 256 16 comparators
83C576 8k ROM 256 16 DIL40, LCC44, | 10-bit A/D, 3 timers, PCA,
87C576 8k EPROM | 256 16 SDIL42 Watchdog timer
80C592 0 512 16 LCC68/QFP80 | 8XC552 + CAN interface OM4110 + | POD-592(N)
83C592 16k ROM 512 16 OM4112 +
87C592 16k EPROM | 512 16 OM4120S
M = Metlink
N = Nohau
March 1996 17

Philips Semiconductors

CMOS and NMOS 8-bit microcontroller family

80C51 FAMILY CMOS (Continued)

TYPE ROM/ RAM | SPEED | PACKAGE FUNCTIONS REMARKS PHILIPS | THIRD PARTY
EPROM (MHz) PROBES PODs
87CE598 | 32K ROM 512 16 QFP80 8xC552 + CAN 87CE:
87CE598 | 32K EPROM 512 16 interface. prod: Q2’94
80CE598 | 0 512 16 No 12C
80C652 0 256 | 16,24 |DIL40/LCC44 | UART, 2 timers OM1092 + | 83652PC(M)
83C652 8k ROM 256 | 16,24 |QFP44 Byte 12C OM1096 + | POD-C51B(N)
87C652 8k EPROM 256 | 16,20 OM41208
83C654 16k ROM 256 | 16,24 |DIL40/LCC44 | UART, 2 timers OM1092 + | 83654(M)
87C654 16k EPROM 256 | 16,20 |QFP44 Byte I12C OM1096 +
OM4120S | POD-C51B(N)
83CE654 16k ROM 256 16 QFP44 UART, 2 timers 83C654 with OM1092 + | 83654(M)
80CE654 0 256 16 Byte 12C Electromagnetic § OM1096 +
Compatibility OM4120S | POD-C51B(N)
improvements
83C750 1K ROM 64 40 SDIP24 skinny | 1 timer OM1094 83751PC(M)
87C750 1KEPROM 64 40
83C751 2k ROM 64 16 DIP24 skinny | 1 timer OM1094P | 83751PC(M)
83C748 LCC28 Bit 12C (8XC751 only) POD-C751(N)
DIP24 skinny
§7C751 2k EPROM 64 16
87c748
83C752 2k ROM 64 16 DIP28,LCC28 |1 timer, OM5072 83752A(M)
83C749 PWM output,
5 8-bit ADC inputs, Bit 12C
87C752 2k EPROM 64 16 DIP 28, LCC28 | (8XC752 only) POD-C752(N)
87c752
80C851 0 128 16 DIL40/LCC44 | UART, 2 timers OM1092 + | 80851PC(M)
83C851 4k ROM 128 16 QFP44 256 byte OM4120S | POD-C51(N)
83C852 6k ROM 256 6 2k byte
EEPROM
smart card hardware CU
83C055 16k ROM 256 12 DIP42 Shrunk | As 8XC053 In dev. OM5054
87C055 16k EPROM 256 12 DIP42 Shrunk
* The following microcontollers have no external memory access: 8XC751, 8XC752, 8XC053, 87C054, 83C852.
M = Metlink
N = Nohau
March 1996 18

Philips Semiconductors

CMOS and NMOS 8-bit microcontroller family

80CLXXX FAMILY CMOS

TYPE

ROM

RAM

SPEED
(MHz)

PACKAGE

FUNCTIONS

REMARKS

PROBE
SDs

REMARKS

85CL000

256

12

Piggyback

Piggyback
CL410, CL411,
CL51, P80C51

85CL580

256

12

Piggyback

Piggyback
CL580

85CL781

256

Piggyback

Piggyback
CL781, CL782,
CL52

80CL51
80CL31

4K

128
128

16
16

DIL40
V8040

2 timers, UART

OoM1079

QFP: OM5020

83CL410
80CL410

4k

128
128

12
12

DIL40
VS040

2 timers
Byte I12C

OM1079

QFP: OM5020

83CL580

6k

256

16

QFP64/
VSO56

3timers, UART
Watchdog timer
Byte i<C,
1PWM
4*8 bit ADC

OM1079 +
OM5004

OM1079: Probe
base
OM5004: Probe
adap

83CL781
83CL782

16k
16k

256
256

12@

4.5V

12@
3V

DIL40
QFP44

3timers, UART
Byte 12C

OM1079 +
OM5004 +
tbd

OM1079: Probe
base
OM5004: Probe
adap

83CL167
83CL267

16K
12K

256
256

12
12

SDIL64
QFP64

3timers
1-14 bit PWM
4-6 bit PWM
4-7 bit PWM
4*4 bit ADC
Byte I2C
160 char OSD
126 char fonts
4 char sizes
Shadow modes
ODS PLL osc.
10MHz
Blinking

In Dev

OM4840
OM1079

83CL168
83CL268

16K
12K

256
256

12
12

SDIL64
QFP64

3timers
1-14 bit PWM
4-6 bit PWM
4-7 bit PWM
4*4 bit ADC
RC
preprocessor
Byte 12C
3 wire serial 1/0
160 char OSD
126 char fonts
4 char sizes
Shadow modes
ODS PLL osc.
10MHz
Blinking

In Dev

OM4840 +
OM1079

March 1996

Philips Semiconductors

CMOS and NMOS 8-bit microcontroller family

8051 FAMILY NMOS

TYPE ROM RAM | SPEED PACKAGE FUNCTIONS REMARKS PROBE THIRD PARTY
(MH2) SDS EMULATOR
8051 4k 128 15 DIL40/PLCC44 | UART, 2 timers OM1092 + 8052PC(M)
8031 0 128 15 DIL40/PLCC44 OM1097 + OPD-C51B(N)
OM4120S
8052 8k 256 15 DIL40/PLCC44 | UART, 3 timers OM4111 + 8052PC(M)
8032 0 256 15 DIL40/PLCC44 | UART, 3 timers OM4110 + OPD-C51B(N)
OM4120S

March 1996

20

Philips Semiconductors

CMOS and NMOS 8-bit microcontroller family

8400 FAMILY CMOS
TYPE ROM RAM | SPEED PACKAGE FUNCTIONS REMARKS PROBE REMARKS
(MHz) SDS
84C21A 2k 64 10 DiL28/S028 20 1/0 lines OM1083 OM1025
84C41A 4k 128 10 DIL28/S0O28 8-bit timer (LSDS)
84C81A 8k 256 10 DiL28/S028 Byte 12c
84C22A 2k 64 10 DIL20/S020 13 /O lines OM1083 + OoM1025
84C42A 4k 64 10 DIL20/S020 8-bit timer Adapter_1 (LSDS)
84C12A 1k 64 16 DIL20/S020
DIL20/S0O20
84C00B 0 256 10 | 28pins 20 I/O lines Piggyback OM1080
8-bit timer
Byte 12C
84C00T 0 256 10 VS0-56 ROMless OM1080
84C121 1k 64 10 DIL20/S020 13 1/0 lines OM1073 OM1025(LEDS)
2 8-bit timers
8 bytes
84C121B 0 64 10 EEPROM Piggyback OoM1027
84C122A 1k 32 10 A: SO20 Controller for 0OM4830
84C122B B: SO24 remote control
84C422A 4K 32 C: 8028 A:121/0
84C422B B: 16 /0
84C822A 8K 32 C:201/0
84C822B
84C822C
84C230 2 64 10 DIL40/VSO40 |12 1/Olines OM1072
8-bit timer
16*4 LCD drive
84C430 4k 128 10 QFP64 24 1/0 lines OM1072
8-bit timer
Byte I12C
24*4 L.CD drive
84CA430BH 0 128 10 Piggyback for C230
and C430
84C633 6k 256 16 VSO056 28 1/0 lines OM1086
8-bit timer
16-bit up/down
counter
16-bit timer
with compare
and capture
84C633B 0 256 16 16*4 LCD drive
84C440 4k 128 10 DIP42 shrunk | RC: 29 I/O lines 12C, RC OM1074 For emulation of
84C441 4k 128 10 LC: 28 1/O lines 12C, LC LC versions,
84C443 4k 128 10 8-bit timer RC use OM1074 +
84C444 4k 128 10 1 14-bit PWM LC adapter_3 +
84C640 6k 128 10 5 6-bit PWM I2C, RC 2 adapter_5
84C641 6k 128 10 3-bit ADC 12C, LC
84C643 6k 128 10 OSD 2L-16 RC
84C644 6k 128 10 LC
84C840 8k 192 10 2C, RC
84C841 8k 192 10 12C, LC
84C843 8k 192 10 RC Baud for LCDS
84C844 8k 192 10 LC OM4831
March 1996 21

Philips Semiconductors

CMOS and NMOS 8-bit microcontroller family

8400 FAMILY CMOS (Continued)

TYPE ROM RAM | SPEED PACKAGE FUNCTIONS REMARKS PROBE REMARKS
(MHz) SDS
84C646 6k 192 10 DIP42 shrunk | 30 I/O lines l2C, RC OM4829 + 0OM4833 for
84C846 8k 192 10 DOS clock = 12C, RC OM4832 LCD584
PLL
8 bit timer
1-14 bit PWM
4-6 bit PWM
4-7 bit PWM
3-4 bit ADC
DOS: 64 disp.
RAM
62 char. fonts
Char. blinking
Shadow modes
8 foreground
colors/char.
8 background
colors/word
DOS: clock:
8..20MHz
84C85 8k 256 10 DIL40/VSO40 | 321/O lines OM1070
8-bit timer
Byte 12C
84C85B 0 256 10 Piggyback for C85
84C853 8k 256 16 DIL40/VSO40 |33 1/0O lines OM1081
8-bit timer
16-bit up/down
counter
16-bit timer with
compare and
capture
84C853B 0 256 16 Piggyback for C853
84C270 2k 128 10 DIL40/VSO40 |8 1/O lines OM1077
84C470 4k 128 10 DIL40/VSO40 | 16*8 capture
keyboard matrix
8-bit timer
84C270B 0 128 10 Piggyback for C270
84C470B 0 128 10 470 also Piggyback for C470
handles mech.
keys
84C271 2k 128 10 DiL40 8 1/0O lines OM1078
16*8 mech.
keyboard matrix
8-bit timer
8400 FAMILY NMOS
TYPE ROM RAM | SPEED PACKAGE FUNCTIONS REMARKS EMULATOR REMARKS
(MHz) TOOLS
8411 1k 64 6 DIL28/SO28 20 1/0 lines OM1025
8421 2k 64 6 DIL28/S0O28 8-bit timer (LCDS) +
8441 4k 128 6 DIL28/SO28 Byte 12C OM1026
8461 6k 128 6 DIL28/S0O28
8422 2k 64 6 DIL20 13 1/0 lines
8442 4k 128 6 DIL20 8-bit timer
Bit12C
8401B 0 128 6 28-pin Piggyback for 84X1

Marrh 1996 22

Philips Semiconductors

CMOS and NMOS 8-bit microcontroller family

3300 FAMILY CMOS

TYPE

ROM

RAM

SPEED
(MHz)

PACKAGE

FUNCTIONS

REMARKS

PROBE
SDS

REMARKS

3315A

1.5k

160

10

DIL28/S0O28

20 1/0 lines
8-bit timer
VDD > 1.8V

OM1083

OM1025(LCDS)

3343

3k

224

DIL28/SO28

20 1/0 lines
8-bit timer
Vpp > 1.8V
Byte I12C

OM1083

OM1025(LCDS)

3344A

2k

224

3.58

DIL28/S0O28

20 1/O lines
8-bit timer
DTMF generator

OM1071

OM1025(LCDS)
+OM1028

3346A

4k

128

10

DIL28/SO28

20 1/0 lines

8-bit timer

Byte 12C

256 bytes EEPROM
Vpp < 1.8V

OM1076

w
o
(>

DIL20/S020

12 1/Q lines
8-bit timer
DTMF generator

OM1071 +
Adapter_2

OM1025(LCDS)
+OM1028

3348A

256

DIL28/S0O28

20 I/O lines
8-bit timer
Byte I12C
Vpp < 1.8V

OM1083

OM1025(LCDS)

3349A

4k

224

3.58

DIL28/SO28

20 1/O lines
8-bit timer
DTMF generator

OM1071

OM1025(LCDS)
+OM1028

3350A

8k

128

3.58

VS064

30 I/O lines

8-bit timer

DTMF generator
256 bytes EEPROM

3351A

2k

64

3.58

DIL28/SO28

20 1/0 lines

8-bit timer

DTMF generator
128 bytes EEPROM

OM5000

3352A

6k

128

3.58

DIL28/SO28

20 /0 lines

8-bit timer

DTMF generator
128 byte EEPROM

OM5000

3353A

6k

128

16

DIL28/SO28

20 1/Q lines

8-bit timer

DTMF generator
Ringer out

128 bytes EEPROM

March '92

OM5000

3354A

8k

256

16

QFP64

36 1/O lines

8-bit timer

DTMF generator
Ringer out

256 bytes EEPROM

June '92

OM4829 +
OM5003

OM4829: Probe
base

8755A

128

DIL28/S028

8k OTP

20 1/0 lines

8-bit timer

DTMF generator
Melody output

128 bytes EEPROM

In Development

3301B

Piggyback for 3315,
3343, 3348

oM1083

3344B

Piggyback for 3344,
3347, 3349

OM1071

33468

Piggyback for 3346

OM1076

March 1996

23

Philips Semiconductors

CMOS and NMOS 8-bit microcontroller family

3300 FAMILY CMOS (Continued)

TYPE ROM RAM | SPEED | PACKAGE FUNCTIONS REMARKS PROBE REMARKS
(MHz) SDS
3350B Piggyback for 3350A | OM4829+
OM5003
3351B Piggyback for OM5000
3351A, 3352A,
3353A
3354B Piggyback for 3354A | OM4829+
OM5010

Mar~h 1Q0R 24

Philips Semiconductors
. ________________________________]}

CMOS 16-bit microcontroller family

16-BIT CONTROLLERS (68000 ARCHITECTURE)

TYPE (EP)ROM | RAM | SPEED FUNCTIONS REMARKS PHILIPS TOOLS THIRD-PARTY
(MHz) TOOLS
68070 - - 175 2 DMA channels, OM4160 Microcore 1 TRACES32-ICE68070
MMU, UART, OM4160/2 Microcore 2 (Lauterbach)
16-bit timer, 12C, OM4161 (SBE68070)
68000 bus interface, OM4767/2 XRAY68070SBE
16Mb address range high level symbolic debugger
OM4222 68070DS development
system
OM4226 XRAY68070DS
high level symbolic debugger
93C101 34k 512 15 Derivative with low Not for new
power modes design
90CE201 16MB 16MB 24 UART, fast I2C, 25 to OM4162 Microcore 4 TRACE32 -
external | external 3 timers (16 bit), +85°C (Lauterbach)
ROM RAM Watchdog timer.
68000 software
compatible, EMC,
QFP64
16-BIT CONTROLLERS (XA ARCHITECTURE)
TYPE (EP)ROM | RAM | SPEED FUNCTIONS REMARKS DEVELOPMENT TOOLS
(MHz)
XA-G1 8k 512 30 3 timers, watchdog, |-40to Nohau
2 UARTs +125°C Ceibo
MacCraigor Systems
XA-G2 16k 512 30 3 timers, watchdog, |-40to Nohau
2 UARTs +125°C Ceibo
MacCraigor Systems
XA-G3 32k 512 30 3 timers, watchdog, |—40 to Nohau
2 UARTs +125°C Ceibo
MacCraigor Systems

February 190/

Philips Semiconductors
|

80C51 microcontroller family features guide

Part Number "Memory Counter Vo Serial External Comments/
(ROMiess) ROM | EPRM | RAM Timers Port | Interfaces | Interrupt Special Features
P B83C750 1K 64 1(16-bi) 2-3/8 - 2 40 MHz, Lowest cost, SSOP
P 87C750 1K 64 1 (16-bit) 2-3/8 - 2 40 MHz, Lowest cost, SSOP
P 83C748 2K 64 7 (16-Di) 2-3/8 E 2 “BXC751 wio I’C, SSOP |
P 87C748 2K 64 1 (16-bit) 2-3/8 - 2 8XC751 w/o I2C, SSOP
S 83C751 2K 64 1 (16-bit) 2-3/8 12C (bit) 2 24-pin Skinny DIP, SSOP
S 87C751 2K 64 1 (16-bit) 2-3/8 12C (bit) 2 24-pin Skinny DIP, SSOP
P 83C749 2K 64 1 (16-bit) 2-5/8 - 2 8XC752 wio 12C, SSOP
P 87C749 2K 64 1 (16-bit) 2-5/8 - 2 8XC752 wio 12C, SSOP
S 83C752 2K 64 1 (16-bit) 2-5/8 12C (bit) 2 5 Channel 8-bit A/D, PWM Output, SSOP
S 87C752 2K 64 1 (16-bit) 2-5/8 12C (bit) 2 5 Channel 8-bit A/D, PWM Output, SSOP
MAX 8051AH (8031AH) K 128 2 3 UART 2 NMOS
sC 80C51 (80C31) 4K 128 2 4 UART 2 CMOS (Sunnyvale)
PCx 80C51 (80C31) 4K 128 2 4 UART 2 CMOS (Hamburg)
sc 87C51 4K 128 2 4 UART 2 CMOS
80CL51 (80CL31) 4K 128 2 4 UART 10 Low Voltage (1.8V to 6V), Low Power
P 83CL410 (80CL410) 4K 128 2 4 12C 10 Low Voltage (1.8V to 6V), Low Power
sC 83C451 (80C451) 4K 128 2 7 UART 2 Extended 1/O, Processor Bus Interface
sc 87C451 4K 128 2 7 UART 2 Extended I/O, Processor Bus Interface
P 83C550 (80C550) 4K 128" | 2+ Watchdog 4 UART 2 8 Channel 8-bit A/D
P 87C550 4K 128 2 + Watchdog 4 UART 2 8 Channel 8-bit A/D
P 83C851 (80C851) 4K 128 2 4 UART 2 256B EEPROM, 80C51 Pin compatible
P 83C542 4K 256 2 1 12C 2 ACCESS.bus, replaces 8042 KB controller
P 87C542 4K 256 2 1 12c 2 See Above
P 83C852 6K 256 2 (16-bit) 2/8 - 1 Smartcard Controller with 2K EEPROM (Data,
Code) Cryptographic Calc Unit
P 83CL580 (80CL580) 6K 256 | 3+ Watchdog 5 UART, I2C 9 4 Channel 8-bit A/D, PWM Output,
Low Voitage (2.5V to 6V), Low Power
MAX 8052AH (8032AH) 8K 256 3 4 UART 2 NMOS
P 80C52 (80C32) 8K 256 3 4 UART 2 80C51 Pin Compatible
P 87C52 8K 256 3 4 UART 2 (see above)
P 83C652 (80C652) 8K 256 2 4 UART, I2C 2 80C51 Pin Compatible
S 87C652 8K 256 2 4 UART, I2C 2 (see above)
P 83C453 (80C453) 8K 256 2 7 UART 2 Extended I/O, Processor Bus Interface
P 87C453 8K 256 2 7 UART 2 Extended I/O, Processor Bus Interface
S 83C51FA (80C51FA) 8K 256 3+PCA 4 UART 2 Enhanced UART, 3 timers + PCA
s 87C51FA 8K 256 3+PCA 4 UART 2 Enhanced UART, 3 timers + PCA
s 83L51FA 8K 256 3+PCA 4 UART 2 Low Voltage 83C51FA (3V @ 20MHz)
S 87L51FA 8K 256 3+ PCA 4 UART 2 Low Voltage OTP 87C51FA (3V @ 20MHz)
[4 83C575 (80C575) 8K 256 3+ PCA+ 4 UART 2 High Reliability, with Low Voltage Detect,
Watchdog OSC Fail Detect, Analog Comparators, PCA
87C575 8K 256 (see above) UART 2 (see above)
83C576 (80C576) 8K 256 3+ PCA+ UART Same as 8XC575 plus UPI and 10-bit A/D
Watchdog
P 87C576 8K 256 (see above) 4 UART 2 (see above)
PC 83C562 (80C562) 8K 256 | 3+ Watchdog 6 UART 2 8 Channel 8-bit A/D, 2 PWM Outputs,
Capture/Compare Timer
PCx 83C552 (80C552) 8K 256 | 3+ Watchdog 6 UART, I2C 2 8 Channel 10-bit A/D, 2 PWM Outputs,
Capture/Compare Timer
S 87C552 8K 256 3 + Watchdog 6 UART, 12C 2 (see above)

Notes: Part number prefixes are noted in the first column.

All combinations of part type, speed, temperature and package may not be available.

Philips Semiconductors

80C51 microcontroller family features guide

Part Number Program Clock Freq ‘Temperature Ranges (°C) Package
(ROMiess) Security? (MHz) 0to70 [-40t0+85[-55t0+125 [PDIP [cDIP [PLcc |[cLcc [PaFp/ssor
83C750 S N 3.5t0 40 X X N24 F24 A28 DB24 (0-70F)
87C750 S Y 3.5t0 40 X X N24 F24 A28 DB24 (0-70F)
83C748 S N 351016 X X N24 A28 DB24 (0-70F)
87C748 S Y 351016 X X N24 F24 A28 DB24 (0-70F)
83C751 S N 3.5t016 X X N24 A28 DB24 (0-70F)
87C751 S Y 351016 X 3 N24 F24 A28 DB24 (0-70F)
83C749 S N 3.51t0 16 X X N28 A28 DB28 (0-70F)
87C749 S Y 3.5t0 16 X X N28 F28 A28 DB28 (0-70F)
83C752 S N 3.5t0 16 X X X N28 A28 DB28 (0-70F)
87C752 S Y 3.5t0 16 X X X N28 F28 A28 DB28 (0-70F)
8051AH (8031AH) S N 3510 15 X X N40 A44
SC80C51 (80C31) S Y 3.5t033 X X X N40 A44 B44 (5)
PCx80C51(80C31) | H N 1210 30 X X X P (40) WP (44) H (44)
87C51 S Y 3.5t0 33 X X X N40 F40 A44 K44 B44 (5)
80CL51 (80CL31) | Z N 01016 (1) X N40 (2) B44
83CL410(80CL410) | Z N Oto 12 (1) X N40 (2) B44
83C451 (80C451) S N 3.5t016 X X X N64 (4) A68
87C451 S Y 351016 X X X N64 (4) A68
83C550 (80C550) S Y 3.5t0 16 X X N40 A44
87C550 S Y 3.5t0 16 X X —40to +125 N40 F40 A44 K44
83C851 (80C851) H Y 12t0 16 X X N40 A44 B44
83C542 S Y 3.5t0 16 X A44
87C542 S Y 3.5t016 X Ad4 K44
83C852 H Y 1to 12 X S028
or die
83CL580 (80CL580) z N 0to12(1) X) B64
B052AH (8032AH) | S N 351015 X X N40 A4
80C52 (80C32) S Y 35t024 X X N40 Ad4 B44 (5)
87C52 S Y 3.5t024 X X X N40 F40 A44 K44 B44 (5)
83C652 (80C652) H Y 1.2t024 X X —-40to +125 N40 A44 B44
87C652 S Y 121020 X X X N40 F40 Ad4 K44
83C453 (80C453) S N 3.5t0 16 X X AB8
87C453 S Y 351016 X X A68
83C51FA (80C51FA) S Y 3.5t024 X X N40 Ad4 B44
87C51FA S Y 3.5t0 24 X X N40 F40 Ad4 K44 B44
83L51FA S Y 3.5t0 20 X X N40 Ad4 B44
87L51FA S Y 3.5t020 X X N40 F40 A44 K44 B44
83C575 (80C575) S Y 41016 X X N40 Ad4 B44
87C575 S Y 41016 X X N40 F40 A44 K44 B44
83C576 (80C576) S Y 410 16 X X N40 A44 B44
87C576 S Y 41016 X X N40 F40 Ad4 K44 B44
83C562 (80C562) | H N 121016 X X 4010 +125 A68 B8O
83C552 (80C552) | H N 121030 X X 4010 +125 AB8 B30
87C552 S Y 1210 16 X A68 K68

Notes: Production Centers are indicated in the second column: H — Hamburg, S — Sunnyvale, Z - Zurich.
All combinations of part type, speed, temperature and package may not be available.
1) Oscillator options start from 32kHz.

2) Also available in VSO40 package.
3) Also available in VSO56 Package.

4) Not recommended for new design.
5) Package available up to 16 MHz only.

Avimiint 400E

Philips Semiconductors

80C51 microcontroller family features guide

Part Number Memory Counter Vo Serial External Comments/
(ROMless) ROM | EPRM | RAM Timers Port Interfaces | Interrupt Special Features
P 83CL267 12K 256 3 25/8 ?C - OSD, 8 PWM Outputs, 3 Software A/D Inputs,
8 LED Drivers
83CL268 12K 256 3 25/8 | I2C, 1M Baud -~ (see above)
P 83C055 16K 256 2 (16-bit) 312 - 2 On-Screen Display, 9 PWM Outputs,
3 Software A/D Inputs
P 87C055 16K 256 2 (16-bit) 31/2 - 2 (see above)
P 80C54 16K 256 3 4 UART 2 Standard; 80C51 compatible
P 87C54 16K 256 3 4 UART 2 Standard; 87C51 compatible
P 83C504 (80C504) 16K 256 2 4 UART 2 ’654 with Hardware Divide (no 12C)
P 87C504 16K 256 2 4 UART 2 (see above)
P 83C654 16K 256 2 4 UART, I12C 2 80C51 Pin Compatible
s 87C654 16K 256 2 4 UART, I2C 2 (see above)
P 83CE654 16K 256 2 4 UART, I2C 2 83C654 with Reduced EMI
P 83CL781 16K 256 3 4 UART, I2C 10 Low Voltage (1.8V to 6V), Low Power
P 83CL782 16K 256 3 4 UART, I2C 10 83CL781 Optimized 12MHz @ 3.1V
S .83C51FB 16K 256 3+PCA 4 UART 2 Enhanced UART, 3 timers + PCA
s 87C51FB 16K 256 3+PCA 4 UART 2 Enhanced UART, 3 timers + PCA
S 83L51FB 16K 256 3+PCA 4 UART 2 Low Voltage 83C51FB (3V @ 20MHz)
S 87L51FB 16K 256 3+PCA 4 UART 2 Low Voltage OTP 87C51FB (3V @ 20MHz)
P 83CL167 16K 256 3 61/8 12c OSD, 8 PWM Outputs,
4 Software A/D Inputs, 8 LED Drivers
P 83CL168 16K 256 3 61/8 | I’C, 1M Baud (see above)
P 83C524 16K 512 3 + Watchdog 4 UART, 12C-bit 2 512 RAM
P 87C524 16K 512 3 + Watchdog 4 UART, I2C-bit 2 512 RAM
P 83C592 (80C592) 16K 512 | 3+ Watchdog 6 UART, CAN 6 CAN Bus Controller with 8 x 10-bit A/D,
2 PWM outputs, Capture/Compare Timer
P 87C592 16K 512 3 + Watchdog 6 UART, CAN 6 (see above)
P 80C58 32K 256 3 4 UART 2 Standard; 80C51 compatible
P 87C58 32K 256 3 4 UART 2 Standard; 87C51 compatible
S 83C51FC 32K 256 3+PCA 4 UART 2 Enhanced UART, 3 timers + PCA
S 87C51FC 32K 256 3+PCA 4 UART 2 Enhanced UART, 3 timers + PCA
P 83C528 (80C528) 32K 512 3 + Watchdog 4 UART, I2C-bit 2 Large Memory for High Level Languages
P 87C528 32K 512 3 + Watchdog 4 UART, 12C-bit 2 Large Memory for High Level Languages
P 83CE528 (80CE528) 32K 512 3 + Watchdog 4 UART, I2C-bit 2 8XC528 with Reduced EMI
P 83CE598 (BOCE598) 32K 512 | 3+ Watchdog 6 UART, CAN 6 CAN Bus Controller, 8 x 10-bit A/D,
2 PWM outputs, WD, T2, Reduced EMI
P 87CE598 32K 512 | 3+ Watchdog 6 UART, CAN 6 (see above)
83CE558(80CE558) 32K 1024 | 3+ Watchdog 6 UART, I12C 2 Low EMI, 8 Channel 10-bit A/D,
2 PWM Outputs, Capture/Compare Timer
P 89CE558 32K 1024 | 3 + Watchdog 6 UART, 12C 2 32K FLash EEPROM plus above

Notes: Part number prefixes are noted in the first column.
All combinations of part type, speed, temperature and package may not be available.

Philips Semiconductors

80C51 microcontroller family features guide

Part Number Program | Clock Freq Temperature Ranges (°C) Package
(ROMiess) Security? (MHz) 01070 |—40to+85|-55t0+125 | PDIP |CDIP |PLCC |[CLCC |PQFP/SSOP
83CL267 T N 4.0to 12 X R42 B64
83CL268 T N 40t012 X R42 B64
83C055 S N 3.510 20 X NB42
87C055 s N 351020 X NB42
80C54 S Y 3.51t024 X X N40 Ad44 B44
87C54 S Y 35t024 X X N40 Fa40 A44 K44 B44
83C504 (80C504) S Y 1.21020 X X X N40 A44 B44
87C504 S Y 1.2t0 20 X X X N40 F40 Ad4 Ka4 B44
83C654 (80C654) H Y 1.2t024 X X —40to +125 R42, Ad4 B44
N40
87C654 S Y 1.2t020 X X X N40 Fa0 Ad4 K44 B44
83CE654 H Y 1.2t016 X X B44
83CL781 z N 0to 12 (1) X N40 B44
83CL782 z N Oto 12 (1) —25to +55 N40 B44
83C51FB S Y 3.5t024 X X N40 Ad4 B44
87C51FB S Y 35t024 X X N40 F40 A44 K44 B44
83L51FB S Y 3.5t020 X N40 Ad4 B44
87L51FB S Y 3.51t020 X N40 F40 Ad44 Ka4 B44
83CL167 T N 201012 X Ra2 Be4
83CL168 T N 4.01012 X R42 B64
83C524 H Y 1.2t016 X X N40 A44 B44
87C524 S Y 3.5t020 X X N40 F40 Ad4 K44 B44
83C592 (80C592) H Y 1.2t0 16 X —40to +125 A68 K68
87C592 H Y 121016 X R42 A68 Keés
B0C58 5 Y 351016 —X X N4O A4 Baa
87C58 S Y 351016 3 X N40 F40 Ad4 Kaa Ba4
83C51FC S Y 3.5t024 X X N40 Ad4 B44
87C51FC S Y 35t024 X X N40 F40 Ad4 K44 B44
83C528 (80C528) H Y 1.2t0 16 X X —40to +125 N40 A44 B44
87C528 S Y 3.5t020 X X N40 F40 A44 K44 B44
83CE528 (80CE528) H Y 1.2t0 16 X X —40to +125 Ad4 B44
83CE598 (80CE598) | H Y 121016 X 4010 +125 B8O
87CE598 H Y 351016 X X B8O
83CE558 80CE558 H Y 1.2t0 16 X X —40to +125 B80
89CE558 H Y 121016 X X Q80 B8O

Notes: Production Centers are indicated in the second column: H — Hamburg, S - Sunnyvale, Z - Zurich.

All combinations of part type, speed, temperature and package may not be available.
1) Oscillator options start from 32kHz.

2) Also available in VSO40 package.
3) Also available in VSO56 Package.

4) Not recommended for new design.
5) Package available up to 16 MHz only.

Avimens annFE

Philips Semiconductors

General

Handling MOS devices

ELECTROSTATIC CHARGES

Electrostatic charges can exist in many things; for example,
man-made-fibre clothing, moving machinery, objects with air blowing
across them, plastic storage bins, sheets of paper stored in plastic
envelopes, paper from electrostatic copying machines, and people.
The charges are caused by friction between two surfaces, at least
one of which is non-conductive. The magnitude and polarity of the
charges depend on the different affinities for electrons of the two
materials rubbing together, the friction force and the humidity of the
surrounding air.

Electrostatic discharge is the transfer of an electrostatic charge
between bodies at different potentials and occurs with direct contact
or when induced by an electrostatic field. All of our MOS devices are
internally protected against electrostatic discharge but they can be
damaged if the following precautions are not taken.

WORK STATION

Figure 1 shows a working area suitable for safely handling

electrostatic sensitive devices. it has a work bench, the surface of

which is conductive or covered by an antistatic sheet. Typical

resistivity for the bench surface is between 1 and 500 kQ per cm?2.

The floor should also be covered with antistatic material. The

following precautions should be observed:

e Persons at a work bench should be earthed via a wrist strap and a
resistor

® All mains-powered electrical equipment should be connected via
an earth leakage switch

e Equipment cases should be earthed
® Relative humidity should be maintained between 50 and 65%

e An ionizer should be used to neutralize objects with immobile
static charges

RECEIPT AND STORAGE
MOS devices are packed for dispatch in antistatic/conductive
containers, usually boxes, tubes or blister tape. The fact that the

contents are sensitive to electrostatic discharge is shown by warning
labels on both primary and secondary packing.

The devices should be kept in their original packing whilst in
storage. If a bulk container is partially unpacked, the unpacking
should be performed at a protected work station. Any MOS devices
that are stored temporarily should be packed in conductive or
antistatic packing or carriers.

ASSEMBLY

MOS devices must be removed from their protective packing with
earthed component pincers or short-circuit clips. Short-circuit clips
must remain in place during mounting, soldering and
cleansing/drying processes. Do not remove more devices from the
storage packing than are needed at any one time.
Production/assembly documents should state that the product
contains electrostatic sensitive devices and that special precautions
need to be taken.

During assembly, endure that the MOS devices are the last of the
components to be mounted and that this is done at a protected work
station.

All tools used during assembly, including soldering tools and solder
baths, must be earthed. All hand tools should be of conductive or
antistatic material and, where possible, should not be insulated.

Measuring and testing of completed circuit boards must be done at a
protected work station. Place the soldered side of the circuit board
on conductive or antistatic foam and remove the short-circuit clips.
Remove the circuit board from the foam, holding the board only at
the edges. Make sure the circuit board does not touch the
conductive surface of the work bench. After testing, replace the
circuit board on the conductive foam to await packing.

Assembled circuit boards containing MOS devices should be
handled in the same way a unmounted MOS devices. they should
also carry waning labels and be packed in conductive or antistatic
packing.

(1)

@

@ @

(6) 7

(8)

(777777 7)

@)

(1) Earthing rail.

(2) Resistor (500 k2 + 10%, 0.5 W).
(3) lonizer.

(4) Work bench.

(5) Chair
(6) Wrist strap. /
(7) Electrical equipment.

(8), (9) Conductive surface/antistatic sheet.

L7000

©)

Figure 1. Protected work station

Philips Semiconductors

Section 2
XA User Guide

CONTENTS

The XA Family - High Performance, Enhanced Architecture 80C51-Compatible
16-Bit CMOS Microcontrollers

T3 Introduction ...

1.2 Architectural Features of XA

Architectural Overview

2.1 ntroduction ...

2.2 Memory Organization
221 RegisterFile
222 DataMemory
2238 Code Memoryo
2.2.4 Special Function Registers

28 CPU

2.3.1 CPU Blocks
2.4 Task Management

25 InstructionSet
2.5.1 Instruction Syntax
2,52 Instruction Set Summary ...
26 External Bus
2.6.1 External Bus Signals
2.6.2 BusConfiguration
2683 BusSTIMING
27 POMS Lo
2.8 Peripherals
2.9 80C51 Compatibility
2.9.1 Software Compatibility
2.9.2 Hardware Compatibility
XA Memory Organization
3.1 Introduction ...
32 TheXARegisterFile
3.2.1 Register File Overview i
3.3 The XAMEMOry SPaCeSc.iinine i e
3.3.1 Bytes, Words, and Alignment i
3.4 DataMemory ...
3.4.1 Alignmentin DataMemory
3.4.2 Externaland Internal Overlap
3.4.3 Use and Read/Write ACCESSoiieiiii i,
. 3.4.4 DataMemory Addressing i
3.5 Code MeMOrY i
3.5.1 Alignmentin Code MemoOry
3.5.2 Externaland InternalOverlap,
353 ACCESS ..ottt
3.6 Special Function Registers (SFRS)ooiii .
3.7 Summary of Bit Addressing
CPU Organization
41 Introduction ...
4.2 Program Status Word
421 CPUStatus Flagsooooioi
4.22 OperatingMode Flags i i
423 ProgramWritesto PSW
4.24 PSWinitialization
4.3 System Configuration Register
4.3.1 XA Large-Memory Model Description
4.3.2 XA Page 0 Model Description
44 ReSel ...
4.41 ResetSequence OVEIVIEW ...
442 Power-upReSet........
4.4.3 Internal ResetSequence i
4.44 XA ConfigurationatReset
4.45 The Reset Exception Interrupt
446 Startup Code
4.4.7 Reset Interactions with XA Subsystems
4.48 AnExternal Reset Circuit

33
33
34

35
35
35

36
38
39
40
4
45
46
46
49
52
52
52
53
54
55
55
56
56

58
58
58
58
61
62
62
62
62
63
63
66
67
67
68
68
71

72
72
73
73
75
75
76
76
77

78
78
79
79
80
81
82
82
82

4.5
4.6

4.7

48

Oscillatorooi

Power Control

4.6.1

4.6.2

XA StACKS .« oottt

471

472

4.7.3 Stack-Based Addressing

474 StackErrorso

4.7.5

XA Interrupts

4.8.1 Interrupt Type Detailed Descriptions

4.8.2 Interrupt Service Data Elements
4.9 Trace Mode Debugging

4.9.1 Trace Mode Operation

492

Real-time Multitasking
Assist for Multitasking in XA

5.1

6.1
6.2

5.1.1 Dualstackapproach......................
5.1.2 RegisterBankso
5.1.3 Interrupt Latency and Overhead
5.1.4 Protection it
Instruction Set and Addressing
Addressing Modes
DescriptionoftheModes
6.2.1 Register Addressing
6.2.2
6.2.3 Indirect-Offset Addressing
6.2.4 Direct Addressingoooeiiiiiiiin
6.2.5 SFRAddressingooiiiieion..
6.2.6
6.2.7 BitAddressing i

6.3
6.4
6.5
6.6

External Bus

71 ExternalBus Signals
7.1.1 PSEN - Program Store Enable
712 RD-Readoooiiiiiiiiiinnanens
713 WRL-WriteLowByte
7.1.4 WRH-Write HighByte
7.1.5 ALE — Address LatchEnable
7.1.6 Addresslinescooiiiii
7.1.7 Multiplexed Address and Data Lines
7148 WAIT=Wait ...t
719 FEA-External ACCESScooovennnn.
7.1.10 BUSW —-BusWidth
7.2 BusConfigurationo
7.2.1 8-Bitand 16-Bit Data Bus Widths
7.2.2 Typical External Device Connections
7.3 BusTimingand Sequences
7.3.1 CodeMemoryco.oeuviiiiennns
7.32 DataMemorycoiiiiiiiii
7.3.3 ResetConfiguration
T4 POMS ..
7.41 1/OPOMACCESS ...
7.4.2 Port Output Configurations
7.4.3 Quasi-Bidirectional Output
7.4.4 Reset State and Initialization
7.4.5 Sharing of I/O Ports with On-Chip Peripherals
Special Function RegisterBus
8.1 Implementation and Possible Enhancements:..
8.2 Read-Modify-Write Lockout

80C51 Compatibility

9.1

Relative Branching and Jumps
Data Types in XA
Instruction Set Overview

The Stack POINIErSo ottt e e e
PUSH and POP . . oo e

Stack INItalization

Trace Mode Initialization and Deactivation

INdirect AdAreSSiNG .« . .« o vttt

Immediate AdreSSiNgc.ovini i

Summary of lllegal Operand Combinations on the XA

Compatibility Considerations

9.1.1
9.1.2
9.1.3
9.1.4
9.1.5

Memory Map and Addressing
Interrupt and Exception Processing

On-Chip Peripherals

Businterface
Instruction Set
9.2 Code Translation

1AIE MOTE . - ettt e e e e s
Power-DoOWNn MOdeottt e

1 The XA Family - High Performance, Enhanced
Architecture 80C51-Compatible 16-Bit CMOS
Microcontrollers

1.1 Introduction

The role of the microcontroller is becoming increasingly important in the world of electronics as
systems which in the past relied on mechanical or simple analog electrical control systems have
microcontrollers embedded in them that dramatically improve functionality and reliability, while
reducing size and cost. Microcontrollers also provide the general purpose solutions needed so
that common software and hardware can be shared among multiple designs to reduce overall
design-in time and costs.

The requirements of systems using microcontrollers are also much more demanding now than a
few years ago. Whether called by the name “microcontrollers”, “embedded controllers” or
“single-chip microcomputers”, the systems that use these devices require a much higher level of
performance and on-chip integration.

As microcontrollers begin to enter into more complex control environments, the demand for
increased throughput, increased addressing capability, and higher level of on-chip integration
has led to the development of 16-bit microcontrollers that are capable of processing much more
information than 8-bit microcontrollers. However, simply integrating more bits or more
peripheral functions does not solve the demand of the control systems being developed today.
New microcontrollers must provide high-level-language support, powerful debugging
environments, and advanced methods of real time control in order to meet the more stringent
functionality and cost requirements of these systems.

To meet the above goals The XA or “eXtended Architecture” family of general-purpose
microcontrollers from Philips is being introduced to provide the highest performance/cost ratio
for a variety of high performance embedded-systems-control applications including real-time,
multi-tasking environments. The XA family members add to the CPU core a specific
complement of on-chip memory, I/Os, and peripherals aimed at meeting the requirements of
different application areas. The core-based architecture allows easy expansion of the family
according to a wide variety of customer requirements. The powerful instruction set supports
faster computing power, faster data transfer, multi-tasking, improved response to external events
and efficient high-level language programming.

Upward (assembly-level) code compatibility with the Philips 80C51 family of controllers

provides a smooth design transition for system upgrades by providing tremendously enhanced
performance.

XA User Guide 33 7/21/95

(Automotive Electronics \

- Power train Electronics

- Vehicle Control Electronics
- Ignition Control

- Fuel Injection Control

- Anti-lock Braking

- Active Suspension

_/

A

Data Processing \ (Industrial Control \
- Disk Drives

- Laser Printers

- Multi-processor Communications
- Copiers

- Robotic Control

- Asynchronous Motor Control
- Fuzzy Control

- Stepper Motor Control

- Protocol Handling .
- Process Automation
- Mass Storage - Drive Control

(Computer Peripherals J k)

XA

Figure 1. Applications of Philips XA microcontrollers

1.2 Architectural Features of XA

e Upward compatibility with the standard 8XC51 core (assembly source level)
e 24-bit address range (16 Megabytes code and data space)

* 16-bit static CPU

» Enhanced architecture using both 16-bit words and 8-bit bytes

e Enhanced instruction set

» High code efficiency; most of the instructions are 2-4 bytes in length
» Fast 16X16 Multiply and 32x16 Divide Instructions

e 16-bit Stack Pointers and general pointer registers

e Capability to support 32 vectored interrupts - 31 maskable and 1 NMI
* Supports 16 hardware and 16 software traps

* Power Down and Idle power reduction modes

e Hardware support for multi-tasking software

771108 34 The XA Familv

2 Architectural Overview

2.1 Introduction

The Philips XA (eXtended Architecture) has a general purpose register-register architecture to
provide the best cost-to-performance trade-off available for a high speed microcontroller using
today’s technology. Intended as both an upward compatibility path for 80C51 users who need
greater performance or more memory, and as a powerful, general-purpose 16-bit controller, the
XA also incorporates support for multi-tasking operating systems and high-level languages such
as C, while retaining the comprehensive bit-oriented operations that are the hallmark of the
80C51.

This overview introduces the concepts and terminology of the XA architecture in preparation for
the detailed descriptions in the following sections of this manual.

2.2 Memory Organization

The XA architecture has several distinct memory spaces. The architecture and the instruction
encoding are optimized for register based operations; in addition, arithmetic and logical
operations may be done directly on data memory as well. Thus, the XA architecture avoids the
bottleneck of having a single accumulator register.

2.2.1 Register File

The register file (Figure 2.1) allows access to 8 words of data at any one time; the eight words
are also addressable as 16 bytes. The bottom 4 word registers are “banked”. That is, there are
four groups of registers, any one of which may occupy the bottom 4 words of the register file at
any one time. This feature may be used to minimize the time required for context switching
during interrupt service, and to provide more register space for complicated algorithms.

For some instructions —32-bit shifts, multiplies, and divides— adjacent pairs of word registers
are referenced as double words.

The upper four words of the register file are not banked. The topmost word register is the stack
pointer, while any other word register may be used as a general purpose pointer to data memory.

The entire register file is bit addressable. That is, any bit in the register file (except the 3
unselected banks of the bottom 4 words) may be operated on by bit manipulation instructions.

The XA instruction encoding allows for future expansion of the register file by the addition of 8
word registers. If implemented, these additional registers will be word data registers only and
cannot be used as pointers or addressed as bytes.

The overall XA register file structure provides a superset of the 80C51 register structure. For

details, refer to the section on 80C51 compatibility.

XA User Guide 35 2/23/96

{ System Stack Pointer E
User Stack B h
R7 RTH “poiter R7L
I
R6 ReH \ R6L
: > Global registers.
R5 RSH ' RSL
l
R4 R4H ! R4L
1 /
N
i |
R3 R3H ! R3L L
|
R2 R2H ! R2L
R1 R1H i RIL > Banked Registers
T
RO ROH | ROL
i
[
|
[/

Figure 2.1 XA register file diagram

2.2.2 Data Memory

The XA architecture supports a 16 megabyte data memory space with a full 24-bit address.
Some derivative parts may implement fewer address lines for a smaller range. The data space
beginning at address 0 is normally on-chip and extends to the limit of the RAM size of a
particular XA derivative. For addresses above that on a derivative, the XA will automatically
roll over to external data memory.

Data memory in the XA is divided into 64K byte segments (Figure 2.2) to provide an intrinsic
protection mechanism for multi-tasking systems and to improve performance. Segment registers
provide the upper 8 address bits needed to obtain a complete 24-bit address in applications that
require large data memories (Figure 2.3).

The XA provides 2 segment registers used to access data memory, the Data Segment register
(DS) and the Extra Segment register (ES). Each pointer register is associated with one of the
segment registers via the Segment Select (SSEL) register. Pointer registers retain this
association until it is changed under program control.

The XA provides flexible data addressing modes. Most arithmetic, logic, and data movement
instructions support the following modes of addressing data memory:

2173/9A 36 Architectural Overview

| Segment 255

(Segment n)

1 Segment 1.
Segment 0

64K bytes

Figure 2.2 XA data memory segments

FFFFh (64K)

The entire memory is
addressable in the

indirect and indirect — ™ Off-chip
with offset modes data memory
The direct

addressing mode ‘
limit is at 1K (3FFh) w\»

The on-chip/off-chip data
memory boundary varies ————®r——-
for different XA derivatives -

Figure 2.3 Simplified XA data memory diagram

XA Tleer Gnide 27 21M72/0A

Direct. The first 1K bytes of data on each segment may be accessed by an address contained
within the instruction.

Indirect. A complete 24-bit data memory address is formed by an 8-bit segment register
concatenated with 16-bits from a pointer register.

Indirect with offset. An 8-bit or 16-bit signed offset contained within the instruction is added to
the contents of a pointer register, then concatenated with an 8-bit segment register to produce a
complete address. This mode allows access into a data structure when a pointer register contains
the starting address of the structure. It also allows subroutines to access parameters passed on
the stack.

Indirect with auto-increment. The address is formed in the same manner as plain indirect, but
the pointer register contents are automatically incremented following the operation.

Data movement instructions and some special purpose instructions also have additional data
addressing modes.

The XA data memory addressing scheme provides for upward compatibility with the 80C51.
For details, refer to Chapter 9.

2.2.3 Code Memory

The XA is a Harvard architecture device, meaning that the code and data spaces are separate.
The XA provides a continuous, unsegmented linear code space that may be as large as 16
megabytes (Figure 2.4). In XA derivatives with on-chip ROM or EPROM code memory, the on-

FFFFFFh (16M)

16 Mbytes of linear
code space Off-chip
code memory

The on-chip/off-chip code
memory boundary varies — % : =
for different XA derivatives ___ On-chip

bode memory "

Figure 2.4 XA code memory map

AN~ NS oo}

chip space always begins at code address O and extends to the limit of the on-chip code memory.
Above that, code will be fetched from off-chip. Most XA derivatives will support an external
bus for off-chip data and code memory, and may also be used in a ROM-less mode, with no
code memory used on-chip.

In some cases, code memory may be addressed as data. Special instructions provide access to
the entire code space via pointers. Either a special segment register (CS or Code Segment) or the
upper 8-bits of the Program Counter (PC) may be used to identify the portion of code memory
referenced by the pointer.

2.2.4 Special Function Registers

Special Function Registers (SFRs) provide a means for the XA to access Core registers, internal
control registers, peripheral devices, and I/O ports. Any SFR may be accessed by a program at
any time without regard to any pointer or segment. An SFR address is always contained entirely
within an instruction. See Figure 2.5.

to
512 bytes g,f:fh%hip
1 K bytes _z
On-Chip
512 bytes SFRs
Bit-Addressable
Y A

Figure 2.5 SFR Address Space

The total SFR space is 1K bytes in size. This is further divided into two 512 byte regions. The
lower half is assigned to on-chip SFRs, while the second half is reserved for off-chip SFRs. This

allows provides a means to add off-chip I/O devices mapped into the XA as SFRs. Off-chip SFR
access is not implemented on all XA derivatives.

On-chip SFRs are implemented as needed to provide control for peripherals or access to CPU
features and functions. Each XA derivative may have a different number of SFRs implemented

XA Tleer Gide 20 N N2QKR

because each has a different set of peripheral functions. Many SFR addresses will be unused on
any particular XA derivative.

The first 64 bytes of on-chip SFR space are bit-addressable. Any CPU or peripheral register that
allows bit access will be allocated an address within that range.

2.3 CPU

Figure 2.6 shows the XA architecture as a whole. Each of the blocks shown are described in this
section.

RESET
Register
File
% % Execution
Unit

Data/Address/Control Bus
16-bit IREG

: T T3

Program .
Exception SFR bus Cofnter '
Controller interface .
| AN L ;
l Program .
B Memory .
! PSWH| [PSWL| | SCR ; Interface .
X SFR bus Z\ 2\ :
PCON] [SSEL
: . CPU X
, Oscillator | .
. Clock \
On-chip On-chip On-chip
RAM Peripherals EPROM/
T ,‘ N
— External External External
Data SFR Program
Memory Devices Memory

Figure 2.6 The XA Architecture

[a¥ale R aV4 AN A vnlilitnnbinenl Manvaineg,

2.3.1 CPU Blocks

The XA processor is composed of several functional blocks: Instruction fetch and decode;
Execution unit; ALU; Exception controller; Interrupt controller; Register File and core registers;
Program memory (ROM or EPROM), Data memory (RAM); SFR and external bus interface;
Oscillator; and on-chip peripherals and I/O ports.

Certain functional blocks that exist on most XA derivatives are not part of the CPU core and
may vary in each derivative. These are: the external bus interface, the Special Function Register
bus (SFR bus) interface, specific peripherals, I/O ports, code and data memories, and the
interrupt controller.

CPU Performance Features

The XA core is partially pipelined and performs some CPU functions in parallel. For instance,
instruction fetch and decode, and in some cases data write-back, are done in parallel with
instruction execution. This partial pipelining gives very fast instruction execution at a very low
cost. For instance, the instruction execution time for most register-to-register operations on the
XA is 3 CPU clocks, or 100 nanoseconds with a 30 MHz oscillator.

ALU

Data operations in the XA core are accomplished with a 16-bit ALU, providing both 8-bit and
16-bit functions. Special circuitry has been included to allow some 32-bit functions, such as
shifts, multiply, and divide.

Core Registers
The XA core includes several key Special Function Registers which are accessed by programs.

The System Configuration Register (SCR) sets up the basic operating modes of the XA. The
Program Status Word (PSW) contains status flags that show the result of ALU operations, the

lant hite for tha f tar filo hank
register select bits for the four register file banks, the interrupt mask bit, and other system flags.

The Data Segment (DS), Extra Segment (ES), and Code Segment (CS) registers contain the
segment numbers of active data memory segments. The Segment Select register (SSEL),
contains bits that determine which segment register is used by each pointer register in the
register file. Bits in the Power Control register (PCON) control the reduced power modes of the
processor.

Execution and Control

The Execution and Control block fetches instructions from the code memory and decodes the
instructions prior to execution. The XA normally attempts to fetch instructions from the code
memory ahead of what is immediately needed by the execution unit. These pre-fetched
instructions are stored in a 7 byte queue contained in the fetch and decode unit.

If the fetch unit has instructions in the queue, the execution unit will not have to wait for a fetch
to occur when it is ready to begin execution of a new instruction. If a program branch is taken,
the queue is flushed and instructions are fetched from the new location. This block also decides
whether to attempt instruction fetches from on or off-chip code memory.

Y A TTear Cinida A1 2/72/06

The instruction at the head of the queue is decoded into separate functional fields that tell the
other CPU blocks what to do when the instruction is executed. These fields are stored in staging
registers that hold the information until the next instruction begins executing.

Execution Unit

The execution unit controls many of the other CPU blocks during instruction execution. It routes
addressing information, sends read and write commands to the register file and memory control
blocks, tells the fetch and decode unit when to branch, controls the stack, and ensures that all of
these operations are performed in the proper sequence. The execution unit obtains control
information for each instruction from a microcode ROM.

Interrupt Controller

The interrupt controller can receive an interrupt request from any of the sources on a particular
XA derivative. It prioritizes these based on user programmable registers containing a priority for
each interrupt source. It then compares the priority of the highest pending interrupt (if any) to
the interrupt mask bits from the PSW. If the interrupt has a higher priority than the currently
running code, the interrupt controller issues a request to the execution unit.

The interrupt controller also contains extra registers for processing software interrupts. These
are used to run non-critical portions of interrupt service routines at a decreased priority without
risking “priority inversion.”

While the interrupt controller is not part of the XA core, it is present in some form on all XA
derivatives.

Exception Controller

The exception controller is similar to the interrupt controller except that it processes CPU
exceptions rather than hardware and software interrupt requests. Sources of exceptions are: stack
overflow; divide by zero; user execution of an RETI instruction; hardware breakpoint; trace

mode; and non-maskable interrupt (NMI).

Exceptions are serviced according to a fixed priority ranking. Generally, exceptions must be
serviced immediately since each represents some important event or problem that must be dealt
with before normal operation can resume.

The Exception Controller is part of the XA core and is always present.

Interrupt and Exception Processing

Interrupt and exception processing both make use of a vector table that resides in the low
addresses of the code memory. Each interrupt and exception has an entry in the vector table that
includes the starting address of the service routine and a new PSW value to be used at the

beginning of the service routine. The starting address of a service routine must be within the first
64K of code memory.

When the XA services an exception or interrupt, it first saves the return address on the stack,
followed by the PSW contents. Next, the PC and the PSW are loaded with the starting address of
the appropriate service routine and the new PSW contents, respectively, from the vector table.

NIN2I0A AN A vallénnbiianl Moo

When the service routine completes, it returns to the interrupted code by executing the RETI
(return from interrupt) instruction. This instruction loads first the PSW and then the Program
Counter from the stack, resuming operation at the point of interruption. If more than the PC and
PSW are used by the service routine, it is up to that routine to save and restore those registers or
other portions of the machine state, normally by using the stack, and often by switching register
banks.

Reset

Power up reset and any other external reset of the XA is accomplished via an active low reset
pin. A simple resistor and capacitor reset circuit is typically used to provide the power-on reset
pulse. the reset pin is a Schmitt trigger input, in order to prevent noise on the reset pin from
causing spurious or incomplete resets.

The XA may be reset under program control by executing the RESET instruction. This
instruction has the effect of resetting the processor as if an external reset occurred, except that
some hardware features that are latched following a hardware reset (such as the state of the EA
pin and bus width programming) are not re-latched by a software reset. This distinction is
necessary because external circuitry driving those inputs cannot determine that a reset is in
progress.

Some XA derivatives also have a hardware watchdog timer peripheral that will trigger an
equivalent chip reset if it is allowed to time out.

Oscillator and Power Saving Modes
XA derivatives have an on-chip oscillator that may be used with crystals or ceramic resonators
to provide a clock source for the processor.

The XA supports two power saving modes of operation: Idle mode and Power Down mode.
Either mode is activated by setting a bit in the Power Control (PCON) register. The Idle mode
shuts down all processor functions, but leaves most of the on-chip peripherals and the external
interrupts functioning. The oscillator continues to run. An interrupt from any operating source
will cause the XA to resume operation where it left off.

The Power Down mode goes one step further and shuts down everything, including the on-chip
oscillator. This reduces power consumption to a tiny amount of CMOS leakage plus whatever
loads are placed on chip pins. Resuming operation from the power down mode requires the
oscillator to be restarted, which takes about 10 milliseconds. Power down mode can be
terminated either by resetting the XA or by asserting one of the external interrupts, if one was
left enabled when power down mode was entered. In Power Down mode, data in on-board RAM
is retained. Further power savings may be made by reducing Vdd in Power Down mode; see the
device data sheet for details.

Stack

The processor stack provides a means to store interrupt and subroutine return addresses, as well
as temporary data. The XA includes 2 stack pointers, the System Stack Pointer (SSP) and the
User Stack Pointer (USP), which correspond to 2 different stacks: the system stack and the user
stack. See Figure 2.7. The system stack always resides in the first data memory segment,

XA User Guide 43 2/23/96

L System _ L — User
System Stack S :cﬁm User Stack Stack
Pointer —] Pointer B
in Segment O in DS Segment
System Mode User Mode

—O\ O
Stack Pointer |

Figure 2.7 XA Stacks

segment 0. The user stack resides in the data memory segment identified by the current value of
the data segment (DS) register. Executing code has access to only one of these stacks at a time,
via R7. Since each stack resides in a single data memory segment, its maximum size is 64K
bytes. The purpose of having two stack pointers will be discussed in more detail in the section
on Task Management below.

R7

The XA stack grows downwards, from higher addresses to lower addresses within data memory.
The current stack pointer always points to the last item pushed on the stack, unless the stack is
empty. Prior to a push operation, the stack pointer is decremented by 2, then data is written to
memory. When the stack is popped, the reverse procedure is used. First, data is read from
memory, then the stack pointer is incremented by 2. Data on the stack always occupies an even

number of bytes and is word aligned in data memory.

Debugging Features

The XA incorporates some special features designed to aid in program and system debugging.
There is a software breakpoint instruction that may be inserted in a user’s program by a
debugger program, causing the user program to break at that point and go to the breakpoint
service routine, which can transmit the CPU state so that it can be viewed by the user.

The trace mode is similar to a breakpoint, but is forced by hardware in the XA after the
execution of every instruction. The trace service routine can then keep track of every instruction
executed by a user program and transmit information about the CPU state to a serial port or
other peripheral for display or storage. Trace mode is controlled by a bit in the PSW. The XA is
able to alter the trace mode bit whenever an interrupt or exception vector is taken. This gives
very flexible use of trace mode, for instance by allowing all interrupts to run at full speed to
comply with system hardware requirements, while single stepping through mainline code.

2/72/0A AA A vnhitantiieal NMoaeoiae,

With these two features, a simple monitor debugger routine can allow a user to single step
through a program, or to run a program at full speed, stopping only when execution reaches a
breakpoint, in either case viewing the CPU state before continuing.

2.4 Task Management

Several features of the XA have been included to facilitate multi-tasking. Multi-tasking can be
thought of as running several programs at once on the same processor, with a supervisory
program determining when each program, or task, runs, and for how long. Since each task
shares the same CPU, the system resources required by each must be kept separate and the CPU
state restored when switching execution from one task to another. The problem is much simpler
for a microcontroller than it is for a microprocessor, because the code executed by a
microcontroller always comes from the same source: the designers of the system it runs on.
Thus, this code can be considered to be basically trustworthy and extreme measures to prevent
misbehavior are not necessary. The emphasis in the XA design is to protect against simple
accidents.

The first step in supporting multi-tasking is to provide two execution contexts, one for the basic
tasks —on the XA termed “user mode”— and one for the supervisory program —"system mode.".
A program running in system mode has access to all of the processor’s resources and can set up
and launch tasks.

Code running in system and user mode use different stack pointers, the System Stack Pointer
(SSP) and the User Stack Pointer (USP) respectively. The system stack is always located in the
first 64K data memory segment, where it can take advantage of the fast on-chip RAM. The user
stack is located within each task’s local data segment, identified by the DS register. The fact that
user mode code uses a different stack than system mode code prevents tasks from accidentally
destroying data on the system stack and in other task spaces.

Additional protection mechanisms are provided in the form of control bits and registers that are
only writable by system mode code. For instance the DS register, that identifies the local data
segment for user mode code, is only writable in the system mode. While tasks can still write to
the other segment register, the ES register, they cannot write to memory via the ES register
unless specifically allowed to do so by the system. The data memory segmentation scheme thus
prevents tasks from accessing data memory in unpredictable ways.

Other protected features include enabling of the Trace Mode and alteration of the Interrupt Mask.
The 4 register banks are a feature that can be useful in small multi-tasking systems by using

each bank for a different task, including one for system code. This means less CPU state that
must be saved during task switching.

XA User Guide 45 2/23/96

2.5 Instruction Set

The XA instruction set is designed to support common control applications. The instruction
encoding is optimized for the most commonly used instructions: register to register or register
with indirect arithmetic and logic operations; and short conditional and unconditional branches.
These instructions are all encoded as 2 bytes. The bulk of XA instructions are encoded as either
2 or 3 bytes, although there are a few 1 byte instructions as well as 4, 5, and 6 byte instructions.

The execution of instructions normally overlaps instruction fetch, and sometimes write-back
operations, in order to further speed processing.

2.5.1 Instruction Syntax

The instruction syntax chosen for the XA is similar in many ways to that of the 80C51. A typical
XA instruction has a basic mnemonic, such as "ADD", followed by the operands that the
operation is to be performed on. The basic syntax is illustrated in Figure 2.8. The direction of
operation flow is determined by the order in which operands occur in the source line. For
instance, the instruction: "ADD R1, R2" would cause the contents of R1 and R2 to be added
together and the result stored in R1. Since R1 and R2 are word registers in the XA, this is a 16-

bit operation.

op-code target source
mnemonic operand <——— gperand
ADD R1 ‘ R2

operand delimiter (comma)

Figure 2.8 Basic Instruction Syntax

An indirect reference (a reference to data memory using the contents of a register as an address)
is specified by enclosing the operand in square brackets, as in: "ADD R1, [R2]". See Figure 2.9.
This instruction causes the contents of R1 and the data memory location pointed to by R2
(appended to its associated segment register) to be added together and the result stored in R1.
Reversing the operand order ("ADD [R2], R1") causes the result to be stored in data memory,
as shown in Figure 2.10.

Most instructions support an additional feature called auto-increment that causes the register
used to supply the indirect memory address to be automatically incremented after the memory
access takes place. The source line for such an operation is written as follows: "ADD R1,
[R2+]". As illustrated in Figure 2.11, the auto-increment amount always matches the data size
used in the instruction. In the previous example, R2 will have 2 added to it because this was a

word operation.

2123196

46 Architectural Qverview

Before After
R2 1004 R2 1004
register file register file
1000 1000
1002 1002
1004 45 1004 45
1006 1006
data memory data memory

Figure 2.9 Basic Indirect Addressing Syntax, to register

Before After
R1 1000 ADD [R2],R1 R1 1000
R2 1004 R2 1004
register file register file
1000 1000
1002 1002
1004 45 1004 1045
1006 1006
data memory data memory

Figure 2.10 Basic Indirect Addressing Syntax, from Register

Another version of indirect addressing is called indirect with offset mode. In this version, an
immediate value from the instruction word is added to the contents of the indirect register in
order to form the actual address. This result of the add is 16 bits in size, which is then appended
to the segment register for that pointer register. If the offset calculation overflows 16 bits, the
overflow is ignored, so the indirect reference always remains on the same segment. The
immediate data from the instruction is a signed 8-bit or 16-bit offset. Thus, the range is +127
bytes to -128 bytes for an 8-bit offset, and +32,767 to -32,768 bytes for a 16-bit offset. Note that

since the address calculation is limited to 16-bits, the 16-bit offset mode allows access to an
entire data segment.

When an instruction requires an immediate data value (a value stored within the instruction

itself), it is written using the "#" symbol. For example: "ADD R1, #12" says to add the value 12
to register R1.

XA User Guide 47 2/23/96

Before After
R1| 1000 ADD RI,[R2+4] Ri| 1045
R2 1004 R2 1006
register file register file
1000 1000
1002 1002
1004 45 1004 45
1006 1006
data memory data memory

Figure 2.11 Indirect Addressing with Auto-Increment

Since indirect memory references and immediate data values do not implicitly identify the size
of the operation to be performed, a few XA instructions must have an operation size explicitly
called out. An example would be the instruction: "MOV [R1], #1". The immediate data value
does not specify the operation size, and the value stored in memory at the location pointed to by
R1 could be either a byte or a word. To clarify the intent of such an instruction, a size identifier
is added to the mnemonic as follows: "MOV.b [R1], #1". This tells us that the operation should
be performed on a byte. If the line read "MOV.w [R1], #1", it would be a word operation.

If a direct data address is used in an instruction, the address is simply written into the
instruction: "ADD 123, R1", meaning to add the contents of register R1 to the data memory
value stored at direct address 123. In an actual program, the direct data address could be given a
name to make the program more readable, such as "ADD Count, R1".

Operations using Special Function Registers (SFRs) are written in a way similar to direct
addresses, except that they are normally called out by their names only: "MOV PSW #12".
Using actual SFR addresses rather than their names in instructions makes the code both harder
to read and less transportable between XA derivatives.

Bit addresses within instructions may be specified in one of several ways. A bit may be given a
unique name, or it may be referred to by its position within some larger register or entity. An
example of a bit name would be one of the status flags in the PSW, for instance the carry ("C")
flag. To clear the carry flag, the following instruction could be used: "CLR C". The same bit
could be addressed by its position within the PSW as follows: "CLR PSWL.7", where the period
(".") character indicates that this is a bit reference. A program may use its own names to identify
bits that are defined as part of the application program.

Finally, code addresses are written within instructions either by name or by value. Again, a
program is more readable and easier to modify if addresses are called out by name. Examples
are: "JMP Loop" and "JMP 124",

2/23/96 4R Architectnral Ouarviaw

2.5.2 Instruction Set Summary

The following pages give a summary of the XA instruction set. For full details, consult Chapter 6.

Basic Arithmetic, Logic, and Data Movement Instructions
The most used operations in most programs are likely to be the basic arithmetic and logic
instructions, plus the MOV (move data) instruction. The XA supports the following basic

operations:

ADD
ADDC
SUB
SUBB
CMP
AND
OR
XOR

Simple addition.

Add with carry.
Subtract.

Subtract with borrow.
Compare.

Logical AND.
Logical OR.
Exclusive-OR.

These instructions support all of the following standard XA data addressing mode combinations::

Operands
R,R
R, [R]

[Rl, R

R, [R+]

[R+]l, R

R, [R+offset]

[R+offset], R

direct, R

R, direct

R, #data

[R], #data

XA User Guide

Description
The source and destination operands are both registers.

The source operand is indirect, the destination operand is a
register.

The source operand is a register, the destination operand is
indirect.

The source operand is indirect with auto-increment, the destination
operand is a register.

The source operand is a register, the destination operand is
indirect with auto-increment.

The source operand is indirect with an 8 or 16-bit offset, the
destination operand is a register.

The source operand is a register, the destination operand is
indirect with an 8 or 16-bit offset.

The source operand is a register, the destination operand is a
direct address.

The source operand is a direct address, the destination operand is
a register.

The source operand is an 8 or 16-bit immediate value, the
destination operand is a register.

The source operand is an 8 or 16-bit immediate value, the
destination operand is indirect.

49 2/23/96

Operands
[R+], #data

[R+offset], #data

direct, #data

Description

The source operand is an 8 or 16-bit immediate value, the
destination operand is indirect with auto-increment.

The source operand is an 8 or 16-bit immediate value, the
destination operand is indirect with an 8 or 16-bit offset.

The source operand is an 8 or 16 bit immediate value, the

destination operand is a direct address.

Other instructions on the XA use different operand combinations. All XA instructions are
covered in detail in the Instruction Set section. Following is a summary of other instruction
types:Additional arithmetic instructions

Additional arithmetic instructions

ADDS
NEG
SEXT
MUL
DIV
DA
ASL
ASR
LEA

Add short immediate (4-bit signed value).
Negate (twos complement).

Sign extend.

Multiply.

Divide.

Decimal adjust.

Arithmetic shift left.

Arithmetic shift right.

Load effective address.

Additional logic instructions

CPL
LSR
NORM
RL
RLC
RR
RRC

Complement (ones complement or logical inverse).

Logical shift right.
Normalize.

Rotate left.

Rotate left through carry.
Rotate right.

Rotate right through carry.

Other data movement instructions

MOVS
MOVC
MOVX
PUSH
POP
XCH

Move short immediate (4-bit signed value).
Move to or from code memory.

Move to or from external data memory.
Push data onto the stack.

Pop data from the stack.

Exchange data in two locations.

Bit manipulation instructions

SETB
CLR
MOV
ANL
ORL

2/23/96

Set (write a 1 to) a bit.
Clear (write a 0 to) a bit.
Move a bit to or from the carry flag.

Logical AND a bit (or its inverse) to the carry flag.

Logical OR a bit (or its inverse) to the carry flag.

50

Architectural Overview

Jump, branch, and call instructions

BR
JMP
CALL
RET
Bce

JB, INB
CINE
DINZ
JZ, INZ

Other instructions

NOP
BKPT
TRAP
RESET

XA User Guide

Branch to code address (plus or minus 256 byte range).

Jump to code address (range depends on specific JMP variation).

Call subroutine (range depends on specific CALL variation).
Return from subroutine or interrupt.

Conditional branches with 15 possible condition variations.
Jump if a bit set or not set.

Compare two operands and jump if they not equal.
Decrement and jump if the result is not zero.

Jump on zero or not zero (included for 80C51 compatibility).

No operation (used mainly to align branch targets).
Breakpoint (used for debugging).

Software trap (used to call system services in a multitasking system).

Reset the entire chip.

51

2/23/96

2.6 External Bus

Most XA derivatives have the capability of accessing external code and/or data memory through
the use of an external bus. The external bus provides address information to external devices,
and initiates code read, data read, or data write strobes. The standard XA external bus is
designed to provide flexibility, simplicity of connection, and optimization for external code
fetches.

As described in section 4.4.4, the initial external bus width is hardware settable, and the XA
determines its value (8 or 16 bits) during the reset sequence.

2.6.1 External Bus Signals

The standard XA external bus supports 8 or 16-bit data transfers and up to 24 address lines. The
precise number of address lines varies by derivative. The standard control signals and their
functions for the external bus are as follows:

Signal name Function

ALE Address Latch Enable. This signal directs an external address
latch to store a portion of the address for the next bus operation.
This may be a data address or a code address.

PSEN Program Store Enable. Indicates that the XA is reading code
information over the bus. Typically connected to the Output
Enable pin of external EPROMs.

RD Read. The external data read strobe. Typically connected to the
RD pin of external peripheral devices.

WRL Write. The low byte write strobe for external data. Typically
connected to the WR pin of external peripheral devices. For an 8-
bit data bus, this is the only write strobe. For a 16-bit data bus, this
strobe applies only to the lower data byte.

WRH Write High. This is the upper byte write strobe for external data
when using a 16-bit data bus.

WAIT Wait. Allows slowing down any type external bus cycle. When
asserted during a bus operation, that operation waits for this
signal to be de-asserted before it is completed.

2.6.2 Bus Configuration

The standard XA bus is user configurable in several ways. First, the bus size may be configured
to either 8 bits or 16 bits. This may be configured by the logic level on a pin at reset, or under
firmware control (if code is initially executed from on-chip code memory) prior to any actual
external bus operations. As on the 80C51, the EA pin determines whether or not on-chip code
memory is used for initial code fetches.

2/23/96 52 Architectural Overview

Second, the number of address lines may be configured in order to make optimal use of I/O
ports. Since external bus functions are typically shared with I/O ports and/or peripheral I/O
functions, it is advantageous to set the number of address lines to only what is needed for a
particular application, freeing I/O pins for other uses.

2.6.3 Bus Timing

The standard XA bus also provides a high degree of bus timing configurability. There are
separate controls for ALE width, PSEN width, RD and WRL/WRH width, and data hold time
from WRL/WRH. These times are programmable in a range that will support most RAMs,
ROMs, EPROMs, and peripheral devices over a wide range of oscillator frequencies without the
need for additional external latches, buffers, or WAIT state generators.

The following figures show the basic sequence of events and timing of typical XA bus accesses.
For more detailed information, consult Section 7 and the device data sheet.

ALE 4———/——\

Address bus code address

Data bus instruction data
PSEN __—/—

Figure 2.12 Typical External Code Read.

ALE
Address bus code address >< code address >(
Data bus instruction data >(instruction data ><:
PSEN

Figure 2.13 Optimized (Sequential Burst) External Code Read.

XA User Guide 53 2/23/96

ALE -—/—\

Address bus data address

RD \—/——

Figure 2.14 Typical External Data Read.

ALE 4/——\

Address bus data address

Data bus data out from XA
WRL/WRH \—f

Figure 2.15 Typical External Data Write.

2.7 Ports

Standard I/O ports on the XA have been enhanced to provide better versatility and
programmability than was previously available in the 80C51 and most of its derivatives. Access
to the I/O ports from a program is through SFR addresses assigned to those ports. Ports may be
read and written is the same manner as any other SFR.

The XA provides more flexibility in the use of I/O ports by allowing different output

configurations. See Figure 2.16. Port outputs may be programmed to be quasi-bidirectional
(80C51 style ports), open drain, push-pull, and high impedance (input only).

2/23/96 54 Architectural Overview

input output

—_— -
-y
— i
I hi-Z >
>
— XA —>
—_— T
—-] e
+V +V

Read
Write _>_| Write __D_‘ Write

Quasi-bidirectional open drain push-pull

Figure 2.16 XA Port Pins with Driver Option Detail

2.8 Peripherals

The XA CPU core is designed to make derivative design fast and easy. Peripheral devices are
not part of the core, but are attached by means of a Special Function Register bus, called the
SFR bus, which is distinct from the CPU internal buses. So, a new XA derivative may be made
by designing a new SFR bus compatible peripheral function block, if one does not already exist,
then attaching it to the XA core.

2.9 80C51 Compatibility

The 80C51 is the most extensively designed-in 8-bit microcontroller architecture in the world,
and a vast amount of public and private code exists for this device family. For customers who
use the 80C51 or one of its derivatives, preservation of their investment in code development is
an important consideration. By permitting simple translation of source code, the XA allows
existing 80C51 code to be re-used with this higher-performance 16-bit controller. At the same
time, the XA hardware was designed with the clear goal of upward compatibility. 80C51

designs may be migrated to the XA with very few changes necessary to software source or
hardware.

XA User Guide 55 2/23/96

The XA provides an 80C51 Compatibility Mode, which essentially replicates the 80C51 register
architecture for the best possible upward compatibility. In the alternative Native Mode, the XA
operates as an optimized 16-bit microcontroller incorporating the best conceptual features of the
original 80C51 architecture.

Many trade-offs and considerations were taken into account in the creation of the XA
architecture. The most important goal was to make it possible for a software translator to
convert 80C51 assembler source code to XA source code on a 1:1 basis, i.e., one XA instruction
for one 80C51 instruction.

Some specific compatibility issues are summarized in the following two sections. See Chapter 9
for a complete description of compatibility.

2.9.1 Software Compatibility

Several basic goals were observed in order to design 80C51 software compatibility for the XA,
while avoiding over-complicating the XA design. Following are some key issues for XA
software:

* Instruction mapping. Each 80C51 instruction translates into one XA instruction. Multi-
instruction combinations that could result in problems if split by an interrupt were avoided as
much as possible. Only one 80C51 instruction does not have a one-to-one direct replacement
with an XA instruction (this instruction, XCHD, is extremely rarely used).

* "As-is" instructions. Most XA instructions are more powerful supersets of 80C51 instructions.
Where this was not possible, the original 80C51 instruction is included "as-is" in the XA
instruction set.

» Timing. Instruction timing must necessarily change in order to improve performance. The XA
does not attempt to retain timing compatibility with the 80C51; rather, the design simply
maximizes instruction execution speed. When 80C51 code that is timing critical is translated to
the XA, the user must re-analyze the timing and make adjustments.

* SFR Access. Translation of SFR accesses is usually simple, since SFRs are normally
referenced by name. Such references are simply retained in the translated XA code. If program
source code from a specific 80C51 derivative references an SFR by its address, the translator
can directly substitute the appropriate XA SFR, provided both the 80C51 and the XA derivative
are correctly identified to the translator.

2.9.2 Hardware Compatibility
The key goal for hardware was to produce a familiar architecture with a good deal of upward
compatibility.

* Memory Map. A major consideration in hardware compatibility of the XA with the 80C51 is
the memory map. The XA approaches this issue by having each memory area (registers, data
memory, code memory, stack, SFRs) be a superset of the corresponding 80C51 area.

2/23/96 56 Architectural Qverview

» Stack. One area where a functional change could not be avoided is in the use of the processor
stack. Due to the fact that the XA supports 16-bit operations in memory, it was necessary to
change the direction of stack growth to downward —the standard for 16-bit processors— in order
to match stack usage with efficient access of 16-bit variables in memory. This is an important
consideration for support of high-level language compilers such as C.

* Pin-for-pin compatibility. XA derivatives are not intended to be exactly pin-compatible with
other 80C51 derivatives that have similar features. Many on-chip XA peripherals, for example,
have improved capabilities, and maintaining pin-for-pin compatibility would limit access to
these capabilities. In general, peripherals have been made upward compatible with the original
80C51 devices, and most enhancements are added transparently. In these cases, 80C51 code will
operate correctly on the 80C51 functional subset.

* Bus Interface. The external bus on the XA is an example of a trade-off between 80C51
compatibility and performance. In order to provide more flexibility and maximum performance,
the 80C51 bus had to be changed somewhat. The differences are described in detail in the
section on the external bus.

XA User Guide 57 2/23/96

3 XA Memory Organization

3.1 Introduction

The memory space of XA is configured in a Harvard architecture which means that code and
data memory (including. sfrs) are organized in separate address spaces. The XA architecture
supports 16 Megabytes (24-bit address) of both code and data space. The size and type of
memory are specific to an XA derivative.

The XA supports different types of both code and data memory e.g.,code memory could be
Eprom, EEProm, OTP ROM, Flash, and Masked ROM whereas data memory could be RAM,
EEProm or Flash.

This chapter describes the XA Memory Organization of register, code, and data spaces; how
each of these spaces are accessed, and how the spaces are related.

3.2 The XA Register File

The XA architecture is optimized for arithmetic, logical, and address-computation operations
on the contents of one or more registers in the XA Register File.

3.2.1 Register File Overview

The XA architecture defines a total of 16 word registers in the Register File:

In the baseline XA core, only RO through R7 are implemented. These registers are available for
unrestricted use except R7— which is the XA stack pointer, as illustrated in Figure 3.1. In effect,
the XA registers provide users with at least 7 distinct “accumulators” which may be used for all
operations. As will be seen below, the XA registers are accessible at the bit, byte, word, and
doubleword level.

Additional global registers, R8 through R15, are reserved and may be implemented in specific
XA derivatives. These registers, when available, are equivalent to RO through R7 except byte
access and use as pointers will not be possible (only word, double-word, and bit-addressable).
The Register File is independent of all other XA memory spaces (except in Compatibility Mode;
see chapter 9).

Register File Detail
Figure 3.2 describes RO through R7 in greater detail.

Byte. Word, and Doubleword Registers

All registers are accessible as bits, bytes, words, and —in a few cases— doublewords. Bit access
to registers is described in the next section. As for byte and word accesses, R1 —for example— is
a word register that can be word referenced simply as “R1”. The more significant byte is labeled
as “R1H” and the less significant byte of R1 is referenced as “R1L”. Double-word registers are
always formed by adjacent pairs of registers and are used for 32 bit shifts, multiplies, and
divides. The pair is referenced by the name of the lower-numbered register (which contains the

XA User Guide 58 212104

less significant word), and this must have an even number. Thus valid double-register pairs are
(RO,R1), (R2,R3), (R4,R5) and (R6, R7).

- 16 bits

R15
R14
R13 derivative-optional
R12 B general registers

R11 (word-accessible only)
R10
R9
R8
R7

R6

R5 general registers
R4 Y present in all

XA derivatives
R3

R2
R1
RO

/\

Figure 3.1 XA Register File Overview

As described in section 4.7, there are two stack pointers, one for user mode and another for
system mode. At any given instant only one stack pointer is accessible and its value is in R7.
When PSW.SM is 0, user mode is active and the USP is accessible via R7. When PSW.SM is 1,
the XA is operating in system mode, and SSP is in R7. (Note however, as described in Chapter
4, all interrupts save stack frames on the system stack, using the SSP, regardless of the current
operating mode.)

There are four distinct instances of registers RO through R3. At any given time, only 1 set of the
4 banks is active, referenced as RO through R3, and the contents of the other banks are
inaccessible. This allows high-speed context-switching, for example, for interrupt service
routines. PSW bits RS1 and RS0 select the active register bank:

RS1 RSO visible register bank

0 bank 0
1 bank 1
0 bank 2
1 bank 3

2/23/96 59 XA Memory Organization

PSW.RSn are writable when the XA is operating in system or user mode, and programs running
in either mode may explicitly change these bits to make selected banks visible one at a time.
More commonly, the interrupt mechanism, as described in Chapter 4, provides automatic
implicit register bank switching so interrupt handlers may immediately begin operating in a
reserved register context.

R15
R14
R13
R12
R11
R10
R9
R8

R7
R6
R5
R4

R3
R2
R1
RO

SSP
R7H Us;P R7L
R6H R6L
R5H : RSL
R4H R4L
R3H E R3L
R2H ,: RoL
R1H E RIL
ROH E ROL

Global registers
(word only)

> Giobai registers.

> Banked Registers

XA User Guide

Figure 3.2 XA Register File

60

2/22/0A

Bit Access to Registers

The XA Registers are all bit addressable. Figure 3.3 shows how bit addresses overlie the basic
register file map. In general, absolute bit references as given in this map are unnecessary. XA
software development tools provide symbolic access to bits in registers. For example, bit 7 may
be designated as “R0.7” with no ambiguity

Bit references to banked registers RO through R3 access the currently accessible register bank,
as set by PSW bits RS1, RS0 and the currently selected stack pointer USP or SSP. The
unselected registers are inaccessible..

R15|Fr|Fe|Fo|Fc|FB|FA| Fo| F8| F7| Fe | F5| F4| F3| F2| F1| Fo

R14|eF|ee|ep|ec|eB|EA| E9| E8| E7| EB| ES| E4| E3| E2| E1| EO

R7 |7F|7e|7p|7c|7B|7A| 79| 78] 77| 76| 75| 74| 73| 72| 71| 70

RG 6F| 6E|6D|6C|6B|6A| 69| 68]67|66| 65| 64| 63| 62| 61|60

R5 5F| 5E|5D|5C| 5B| 5A| 59| 58| 57| 56| 55| 54| 53| 52| 51| 50

R4 4F|4E|4D|4C|4B|4A| 49|48 47[46| 45| 44)143]42|41}40

R3 |3F|3E|3p|3c|3B|3A|39|38|37|36| 35|34 33| 32| 31|30

R2 2F|2E|2D|2C|2B|2A| 29| 28] 27| 26| 25| 24| 23| 22| 21|20

R1 1F|1E(1D|1C|1B|1A|19|18}17[16|15}14}113|12[11]|10

RO OF |OE|OD|0C|OB|0OA|09|08|07|06|05|04|03|02{01|00

RnH RnL

Figure 3.3 Bit Address to Registers

3.3 The XA Memory Spaces

The XA divides physical memory into program and data memory spaces. Twenty-four address
bits, corresponding to a 16MB address space, are defined in the XA architecture. In any given
XA implementation, fewer than all twenty-four address bits may actually be used, and there is
provision for a small-memory mode which uses only 16-bit addresses; see Chapter 4.

Code and data memory may be on-chip or external, depending on the XA variant and the user

implementation. Whether a specific region is on-chip or external does not, in general, affect
access to the memory.

2/23/96 61 XA Memory Organization

3.3.1 Bytes, Words, and Alignment

XA memory is addressed in units of bytes, where each byte consists of 8 bits. A word consists of
two bytes, and the word storage order is “Little-Endian”, that is, the less significant byte of word
data is located at a lower memory address. See Figure 3.4.

address AO
n 0 L.S. Byte
WORD at address n
n+1 1 M.S. Byte

Figure 3.4 Memory byte order

Any word access must be aligned at an even address (Address bit A0=0). If an odd-aligned word
access is attempted the word at the next-smallest even address will be accessed, that is, AO will
be set to 0.

The externai XA memory spaces may be accessed in byte or word units but the hardware access
method does not affect the even alignment restriction on word accesses.

3.4 Data Memory

The data memory space starts at address 0 and extends to the highest valid address in the
implementation, at maximum, FFFFFFh. As will be described below, the data memory space is
segmented into 256 segments of 64K bytes each. External Data Memory starts at the first
address following the highest Internal Data Memory location. In general, at least 512 bytes of
Internal Data Memory, starting at location 0, will be provided in all XA implementations;
however, there is no inherent minimum or maximum architectural limitation on Internal Data
Memory.

3.4.1 Alignment in Data Memory

There are no data memory alignment restrictions except that placed on word accesses to all
memory: Words must be fetched from even addresses. An attempt to fetch a word at an odd
address will fetch a word from the preceding even address.

3.4.2 External and Internal Overlap

If External Data Memory is placed by external logic at addresses that overlaps Internal Data
Memory, the Internal Data Memory generally takes precedence. The overlapped portion of the
External memory may be accessed only by using a form of the MOVX instruction; see Chapter
6. The use of MOVX always forces external data memory fetch in XA. For non-overlapped
portion of external data memory, no MOVX is required.

XA User Guide 62 2/23/96

3.4.3 Use and Read/Write Access

Data memory is defined as read-write, and is intended to contain read/write data. It is logically
impossible to execute instructions from XA Data Memory. It is possible, and a common
practice, to add logic to overlap external code and data memory spaces. In this case it is
important to understand that the memory spaces are logically separate. In such a modified
Harvard architecture, implemented with external logic, it is possible —but not recommended- to
write self-modifying XA code. No such overlap is possible for internal data memory.

3.4.4 Data Memory Addressing

XA data memory addressing is optimized for the needs of embedded processing. Data memory
in the XA is divided into 64K byte segments. This provides an intrinsic protection mechanism
for multitasking applications and improves performance by requiring fewer address bits for
localized accesses.

Addressing through Segment Registers

Segment registers provide the upper 8 address bits needed to obtain a complete 24-bit address in
applications that require full use of the XA 16 Mbyte address space. Two segment registers are
defined in the XA architecture for use in accessing data memory, the Data Segment Register
(DS), and the Extra Segment Register (ES). As user stacks are located in the segment specified
by DS, it is probably most convenient to address user data structures through ES. Each pointer
register, namely RO through R6, is associated with one of the segment registers via the Segment
Select (SSEL) register as illustrated in Figure 3.5.

SSEL |ESWEN|R6SEG | R5SEG| R4SEG |R3SEG | R2SEG | R1SEG | ROSEG

|
o !
|
|

8-bit segment
segment DS| identifier
registers F —
ES @ R3 16-bit segment offset
1]
complete A #
24-bit memory
address

Figure 3.5 Address generation

A 0 in the SSEL bit corresponding to the pointer register selects DS (default on RESET) and 1
selects the ES. For example, when R3 contains a pointer value, the full 24 bit address is formed
by concatenating DS or ES, as determined by the state of SSEL bit 3, as the most significant 8
bits. As a consequence of segmented addressing, the XA data memory space may be viewed as
256 segments of 64K bytes each (Figure 3.6).

2/23/96 63 XA Memory Organization

64K Segments
FFFFh 0 ”
Data Memory 255
(only indirectly
addressed)
400h | _ _ _ o __ L _____Jd_____ | R R
3FFh RAM
(directly and
indirectly
addressable)
Directly 40h
addressed 3Fh
data Standard
(1Kb per bit-addressable
segment) RAM
20h
1Fh
RAM
(directly and
indirectly
addressable)
0

Figure 3.6 Data memory segmentation

The ESWEN (bit 7 of SSEL) can be programmed only in the System Mode to enable (1) or
disable (0) write privileges to data segment via ES register in the User Mode. This bit defaults to
the disabled (0) state after reset.

Addressing Modes
The XA provides flexible data addressing modes. Arithmetic, logic, and data movement
instructions generally support the following data memory access:

Indirect. A complete 24-bit data memory address is formed by an 8-bit segment register
concatenated with a 16-bit pointer in a register.

Direct. The first 1K bytes of data in each segment may be accessed by an address contained
within the instruction. Indirect with offset. A signed byte/word offset contained within the
instruction is added to the contents of a pointer register, and the result is concatenated with the
8-bit segment register DS to produce a complete 24-bit address.

Indirect with auto-increment. Indirect addresses are formed as above and the pointer register
contents are automatically incremented.

Bit-level. Bit-level addresses are absolute references to specific bits.

Data move instructions and some special purpose instructions also have additional data
addressing modes as described in Chapter 6.

XA User Guide 64 2/23/96

Indirect Addressing

The entire 16 MByte address space is accessible via register-indirect addressing with a segment
register, as illustrated by Figure 3.7 (Note that for simplicity, this figure omits showing how the
Extra Segment or Data Segment Register is chosen using SSEL.).

FFFFFFh
b 16 bits Bn
r + 8 bits Seg
ﬂ P Reg
L g 24 bit address
0

Figure 3.7 Indirect Access to 24 Bit Address Space

Indirect addressing with an offset is a variant of general indirect addressing in which an 8-bit or
16-bit signed offset contained within the instruction is added to the contents of a pointer register,
then concatenated with an 8-bit segment register to produce a complete address. This mode
gives access to data structures when a pointer register contains the starting address of the
structure. It also supports stack-based parameter passing.

Indirect addressing with autoincrement is another variant of indirect addressing in which the
pointer register contents are automatically incremented following the operation. When the
operand is a byte, the increment is one; when the operand is a word, the increment is 2. Using
indirect addressing with auto-increment provides a convenient method of traversing data
structures smaller than 64K bytes. For data structures exceeding 64K bytes in length, the
program code must explicitly adjust the segment register at page boundaries.

Address generation in these two modes of indirect addressing is illustrated inFigures 3.8 and 3.9.
When using indirect addressing care is necessary to avoid accessing a word quantity at an odd
address. This will result in an access using the next-lower even address, which is generally not
desirable. Note that the indirect addressing with an offset will be successful in this case as long
as the final, effective address is even. That is, both the base address and the offset may be odd.

Direct Addressing

The first 1K of each segment is directly addressable. Address generation for the direct address
mode is summarized in Figure 3.10. Segment register DS is always used.

Direct data-reference instructions encode a maximum of 10 address bits, which are zero extended
to sixteen bits and concatenated with DS to form an absolute 24 bit address. In all segments, direct
addressing can be used to access any byte in the first 1K bytes of the segment.

2/23/96 65 XA Memory Organization

______ 8 or 16-bit -
| signed offset @ 16 bits Rn
+

i Seg

+ Rn 8 bits| Reg
- partial -
16 bits indirect addr 24 bit address
+ 8 bits Seg
®
Rn <-- Rn + data size
24 bit address

a) Indirect addressing with offset b) indirect addressing with auto increment

Figure 3.8 Indirect Addressing

0 10 bits Direct address from instruction

+ 8 bits

DS (data segment register)

24 bit address

Figure 3.9 Direct address generation

SFR Addressing

A 1K portion of the direct address space, addresses 400h through 7FFh, is reserved for SFR
addresses. The SFR address space uses a portion of the direct address space, but represents a
completely distinct logical area that is not related to the data memory segmentation scheme. See
section 3.6 for a complete description of SFR access.

Bit Addressing

Thirty-two bytes of each segment of data memory are also bit-addressable, starting at offset 20h
in the segment addressed by the DS register. Address generation for bit addressing in the data
memory space is shown in Figure 3.10. As described in chapter 6, bits are encoded in
instructions as 10 bits. Figure 3.11 shows the bit addresses as they appear in memory .

3.5 Code Memory

Code memory starts at address 0 and extends to the highest valid address in the implementation,
at maximum, FFFFFFh. External Code Memory (off-chip) starts at the first address following
the highest Internal Code Memory (on-chip) location, if any. If code memory is present on-chip,
it always starts at location O.

XA User Guide 66 2210k

identifies 1 of 8 bits in a byte.

byte offset from 20h l
/\

N\ / \

0|1
9 8 7 6 5 4 3 2 1 O

Figure 3.10 Bit address generation in direct memory space

3Fh 1FF|1FE[1FD| 1FC| 1FB| 1FA} 1F9| 1F8} 1F7| 1F6| 1F5| 1F4| 1F3| 1F2| 1F 1| 1FO| Segment n
3Eh 1EF|1EE|1ED|1EC|1EB| 1EA| 1E9| 1E8] 1E7| 1E6| 1ES| 1E4| 1E3| 1E2| 1E1] 1EO
4 Y -
[) e
® 1
28h 14F| 14E| 14D| 14C| 14B| 14A| 149| 148| 147| 146| 145 144| 143 142] 141 140 i’
26h 13F| 13E| 13D| 13C| 13B| 13A| 139| 138 137| 136| 135 134| 133 132] 131 130
24h 12F| 12E[12D| 12C| 12B| 12A| 129| 128 127] 126| 125 124| 123] 122| 121 120
22h 11F| 11E[11D[11C| 11B{ 11A| 119| 118] 117| 116 115| 114] 113| 112] 111|110 F
20h 10F| 10E| 10D| 10C| 10B| 10A| 109] 108] 107 106| 105 104{ 103| 102| 101|100 ~—
\. A, /
byte at odd address byte even address 20hE —— — — —

Figure 3.11 Direct memory bit addressing

3.5.1 Alignment in Code Memory

As instructions are variable in length, from 1 to 6 bytes (see Chapter 6), instructions in code
memory can be located at odd addresses. As described in Chapter 6, instruction branch targets,
i.e., targets of jumps, calls, branches, traps, and interrupts must be aligned on an even address.

3.5.2 External and Internal Overlap

If External Code Memory is placed by external logic at locations that overlap Internal Code
Memory, the Internal Code Memory takes precedence, and the overlapped portion of the
External memory will in not be accessed. However, on XA implementations that provide an
External Address (EA) hardware input, setting EA low will cause external program memory to
be used.

2/23/96 67 XA Memorv Oreanization

3.5.3 Access

Code memory is intended to contain executable XA instructions. The XA architecture supports
storing constant data in Code Memory and provides special access modes for retrieving this
information. Constant data is implicitly stored within the instruction of many data manipulation
instructions when immediate operands are specified.

It is possible, and a common practice, to overlap external code and data memory spaces. In this
case it is important to understand that the memory spaces are logically separate. In such an
architecture, implemented with external logic, code memory is logically read-only memory that
is writable when accessed as external data memory. No such overlap is possible for internal
code memory.

MOVC addressing in Code Memory

A special instruction, MOVC, is defined in the XA for accessing constant data (e.g lookup
tables, string constants etc.) stored in code memory. There is a standard form of MOVC that
reflects the native XA architecture, and there are two variations that reflect 80C51 compatibility;
see Chapter 9 for details of 80C51 compatibility. The standard form of MOVC uses a 16-bit
register value as a pointer, appended to either the top 8 bits of the Program Counter (PC) or the
Code Segment register (CS) to form a 24-bit address, as shown in Figure 3.12. The source for
the upper 8 address bits is determined by the setting of the segment selection bit (0 = PC and 1=
CS) in the SSEL register that corresponds to the operand register.

SSEL |ESWEN|R6SEG | R5SEG| R4SEG |R3SEG | R2SEG | R1SEG | ROSEG

{
—_N O]

8-bit segment
segment PC identifier
registers |
CS R4 16-bit selgment offset
complete + Y
24-bit memory
address

Figure 3.12 MOVC addressing in code memory

3.6 Special Function Registers (SFRs)

Special Function Registers (SFRs) provide a means for programs to access CPU control and
status registers, peripheral devices, and I/O ports. The SFR mechanism provides a consistent
mechanism for accessing standard portions of the XA core, peripheral functions added to the
core within each XA derivative, and external devices as implemented in future derivatives.

XA User Guide AR A,

Figure 3.13 highlights the core registers that are accessed as SFRs: PCON, SCR, SSEL,
PSWH, PSWL, CS, ES, DS. Communication with these registers is performed via the core’s
internal SFR bus, which is dedicated for this purpose alone. Communication with peripherals
outside the core but on-chip, and with off-chip SFRs is through the SFR Bus Interface.
Logically, all these registers are located in the same SFR address space and are all accessed
equivalently.

RESET
: Register
! File
! % % } Execution '
' Unit

Data/Address/Control Bus

s g T8 {f i

: Program :
: Exception SFR bus Cofnter X
! Controller %Qterface ! '
T R o R - Program :
Memory X
Interface !

ZANIPAN

]

Data Memory
Interface

A \/
-chi On-chip On-chip

Peripheral EPROM/
ROM NV
External External External
Data SFR Program
Memory Devices Memory

Figure 3.13 XA Core with SFRs highlighted

The SFR address space is 1K bytes (Figure 3.14). The first half of this space (400h through
SFFh) is dedicated to accessing core registers and on-chip peripherals outside the XA core.
SFRs assigned addresses in the range 400h through 43Fh are both byte and bit-addressable. The
second half (600h through 7FFh) of the SFR space is reserved for providing access to off-chip

2/23/96 69 XA Memorv Oreanization

SFRs. The off-chip sfr space is provided to allow faster access of off-chip memory mapped I/O
devices without having to create a pointer for each access.

7FFh N
Reserved for off-chip,
non-bit addressable
SFRs > 512 bytes
(memory-mapped 1/0O)
600h P
5FFh
. Standard
1K directly non-bit addressable
addressable on-chio SFRs
SFR space P
440h
43Fh 512 bytes
64 bytes of bit
addressable on-chip
SFRs
400h

Figure 3.14 SFR address space
Following are some key points to remember when using SFRs:

SFRs should be symbolically addressed. Because SFR assignments may vary from derivative to
derivative, it is important to always use symbolic references to SFRs. XA software development
tools provide symbolic constants for all SFRs in the form of header/include files and the tools
will be updated as new SFRs are added with each added XA derivative.

Verify that your application uses the right header/include files. Although baseline SFRs are
likely to retain their addresses in future XA derivatives, this is not guaranteed. SFRs used for
optional peripherals may well have different addresses on different derivatives, and the same
address on one derivative may access a different peripheral SFR.

Any SFR may be accessed at any time without reference to a pointer or segment. SFR access is
independent of any segment register, so SFRs are always accessible with the 10 bit address
encoded in instructions accessing SFRs.

SFRs may not be accessed via indirect address. Any time indirection is used, data memory is
accessed. If an SFR address is referenced as an indirect address, physical RAM at that address —

if it exists— is accessed.

An SFR address is always contained entirely within an instruction. The SFR address is always
encoded in the instruction providing the access, and there is no other way of addressing an SFR.

XA User Guide 70 2192104

Details of access to external SFRs is determined by derivative implementation. Access to off-
chip SFRs is a reserved feature not implemented in the baseline XA. Consult derivative product
datasheets for details of external SFR access, e.g., timing.

3.7 Summary of Bit Addressing

Several sections of this chapter have described portions of the XA that are bit-addressable.
There are a total of 1024 addressable bits distributed in the XA architecture, chosen to make
important data structures immediately accessible via XA bit-processing instructions,
specifically, all registers in the register file, RO through R7 (and R8 through R15 if
implemented); directly addressable RAM addresses 20h through 3Fh in the page currently
specified by DS, and a portion of the on-chip SFRs. Figure 3.15 summarizes all the bit-
addressable portions of the XA.5

bit space overlaps bytes...

start end type start end
0 -« OFFh registers RO <« R15

100h -e—» 1FFh direct RAM 20h -« 3Fh

200h <+ 3FFh on-chip SFRs 400h ~€—43Fh

Figure 3.15 Bit addressing summary

2/MN2NQA 71

Y A Mamaruv Oroanizatinn

4 CPU Organization

This chapter describes the Central Processing Unit (CPU) of the XA Core. The CPU contains all
status and control logic for the XA architecture. The XA reset sequence and the system
oscillator interface with the CPU, and power control is handled here. The CPU performs
interrupt and exception handling. The XA CPU is equipped with special functions to support
debugging.

4.1 Introduction
Figure 4.1 is a block diagram of the XA Core.

RESET
: Register X
' Execution !
. Data/Address/Control Bus Unit :
. 16-bit IREG :
- @ N\ :
! - Program .
' Exception SER bus Counter .
! Controller interface '
! Program .
: 2 Memory '
' Interface '
! VANEVAN !
: - — X
. Data Memory .
' Interface <}l '
OH - i
On-chip On-chip On-chip
- RAM Peripherals EPROM/
I ROM N

- External External External

Data SFR Program

Memory Devices Memory

Figure 4.1 The XA Core

2/723/96 1 Anrr oA

Here is an overview of core elements: The XA Core oscillator provides a basic system clock.
Timing and control logic are initialized by an external reset signal; once initialized, this logic
provides internal and external timing for program and data memory access. This logic supervises
loading the Program Counter and storing instructions fetched by the Program Memory Interface
into the Instruction Register. The timing and control logic sequences data transfers to and from
the Data Memory Interface. Under the same control, the ALU performs Arithmetic and Logical
operations. The ALU stores status information in the low byte of the Program Status Word
(PSWL). The on-board register file is used for intermediate storage and contains the current
value of the Stack Pointer (SP). The high byte of the Program Status Word (PSWH) chooses
between a privileged System Mode and a restricted User Mode; controls a Trace Mode used for
single-step debugging, chooses the active register bank, and records the priority of the currently
executing process. The System Configuration Register (SCR) is initialized to choose native XA
mode execution or an 80C51 family compatibility mode. The Segment Selection Register (SSL)
controls the use of the Code Segment (CS), Data Segment (DS), and the Extra Segment (ES)
registers. The XA Core architecture supports interfaces to on- and off-chip RAM, ROM/
EPROM, and Special Function Registers (SFRs). '

This chapter describes all these core elements in detail.

4.2 Program Status Word

The Program Status Word (PSW) is a two-byte SFR register that is a focal point of XA
operations. The least significant byte contains the CPU status flags, which generally reflect the
result of each XA instruction execution. This byte is readable and writable by programs running
in both User and System modes.

PSWH PSWL

T T
PSW Operating Mode Flags| CPU Flags

Figure 4.2 XA PSW

The most significant byte of PSW is written by programs to set important XA operating modes
and parameters: system/user mode, trace mode, register bank select bits, and task execution
priority. PSWH is readable by any process but only the register select bits may be modified by
User mode code. All of the flags may be modified by code running in System Mode.

It should be noted that the XA includes a special SFR that mimics the original 80C51 PSW
register. This register, called PSW51, allows complete compatibility with 80C51 code that
manipulates bits in the PSW. See Chapter 9 for details of 80C51 compatibility.

4.2.1 CPU Status Flags

The PSW CPU flags (Figure 4.3) signify Carry, Auxiliary Carry, Overflow, Negative, and Zero.
Some instructions affect all these flags, others only some of them, and a few XA instructions
have no effect on the PSW status flags. In general, these flags are read by programs in order to

XA User Guide 73 2/23/96

make logical decisions about program flow. Chapter 6 describes comprehensively how CPU
Status Flags are affected by each instruction type. Consult reference pages in Chapter 6 for
details about how individual instructions affect the PSW Status Flags.

PSWL cC AC - - - vV N Z

1 i 1 I 1 i 1

Figure 4.3 PSW CPU status flags

C, the Carry Flag, generally reflects the results of arithmetic and logical operations. It contains
the carry out of the most significant bit of an arithmetic operation, if any, for the instructions
ADD, ADDC, CMP, CINE, DA, SUB, and SUBB.The carry flag is also used as an intermediate
bit for shift and rotate instructions ASR, LSL, LSR, RLC, and RRC.

The multiply and divide instructions (MUL16, MULU8, MULU16, DIV16, DIV32, DIVUS,
DIVU16, and DIVU32) unconditionally clear the carry flag.

AC, the auxiliary carry flag, is updated to reflect the result of arithmetic instructions ADD,
ADDC, CMP, SUB, and SUBB with the carry out of the least significant nibble of the ALU.
This flag is used primarily to support BCD arithmetic using the decimal adjust instruction (DA).

V is the overflow flag. It is set by a twos complement arithmetic overflow condition during the
arithmetic instructions ADD, ADDC, CMP, NEG, SUB, and SUBB.

V is also set when the result of a divide instruction (DIV16, DIV32, DIVUS, DIVU16, DIVU32)
exceeds the size of the specified destination register and when a divide-by-zero has occurred.
For multiply instructions (MUL16, MULU8, MULU16) this flag is set when the result of a
multiply instruction exceeds the source operand size. In this case “overflow” provides an
indication to the program that the result is a larger data type than the source, such as a long
integer product resulting from the multiply of two integers).

N reflects the twos complement sign (the high-order or “negative” bit) of the result of arithmetic
operations and the value transferred by data moves. This flag is unaffected by PUSH and POP
instructions.

Z (“zero”) reflects the value of the result of arithmetic operations and the value transferred by
data moves. This flag is set if the result or value is zero, otherwise it is cleared. The flag is
unaffected by PUSH, POP, and XCH instructions.

Other bits (marked with “-” in the register diagram) are reserved for possible future use.
Programs should take care when writing to registers with reserved bits that those bits are given
the value 0. This will prevent accidental activation of any function those bits may acquire in
future XA CPU implementations.

2/23/96 74 CPU Organization

4.2.2 Operating Mode Flags

The PSW operating mode flags (Figure 4.4) set several aspects of the XA operating mode. All
of the flags in the upper byte of the PSW (PSWH) except the bits RS1 and RSO may be modified
only by code running in system mode.

PSWH {[SM TM RS1 RS0 IM3 [IM2 M1 IMO

Figure 4.4 PSW operating mode flags

The System Mode bit, SM, when asserted, allows the currently running program full System
Mode access to all XA registers, instructions, and memories. (For example, most of PSWH can
only be modified when SM is asserted.) When this bit is cleared, the XA is running in User
Mode and some privileges are denied to the currently running program.

The Trace Mode bit, TM, when set to 1, enables the built-in XA debugging facilities described
in section 4.9. When TM is cleared, the XA debugging features are disabled.

The bits RS1 and RS0 identify one of the four banks of word registers RO through R3 as the
active register set. The other three banks are not accessible as registers (but also see the
Compatibility Mode description in the System Configuration Register section).

The 4 bits IM3 through IMO (Interrupt Mask bits) identify the execution priority of the current
executing program. The event interrupt controller compares the setting of the IM bits to the
priority of any pending interrupts to decide whether to initiate an interrupt sequence. The value O
in the IM bits indicates the lowest priority, or fully interruptible code. The value 15 (or F
hexadecimal) indicates the highest priority, not interruptible by event interrupts. Note that
priority 15 does not inhibit servicing of exception interrupts or NMIL.

The value of the IM bits may be written only by code operating in the system mode. Their value
may be read by interrupt handler code to implement software-based interrupt priorities. Note
that simply writing a new value to the interrupt mask bits can sometimes cause what is called a
priority inversion, that is, the currently executing code may have a lower priority than
previously interrupted code. The Software Interrupt mechanism is included on some XA
derivatives specifically to avoid priority inversion in complex systems. Refer to the section on
Software Interrupts for details.

4.2.3 Program Writes to PSW

The bytes comprising the PSW, namely PSWH and PSWL, are accessible as SFRs, and there is
a potential ambiguity when a write to the PSW is performed by an instruction whose execution
also modifies one or more PSW bits. The XA resolves this by giving full precedence to explicit
writes to the PSW.

XA User Guide 75 2/23/96

For example, executing
MOV.b ROL, #81h

sets PSW bit N to 1, since the byte value transferred is a twos complement negative number.
However, executing

MOV.b PSWL, #81h

will set PSW bits C and Z and leave bit N cleared, since the value explicitly written to PSW
takes precedence.

This precedence rule suppresses all PSW flag updates. When a value is written to the PSW, for
example when executing

OR.b PSWH, #30

the contents of PSWL are unaffected.

4.2.4 PSW Initialization

As described below, at XA reset, the initial PSW value is loaded from the reset vector located at
program memory address 0. Philips recommends that the PSW initialization value in the reset
vector sets IM3 through IMO to all 1’s so that XA initialization is marked as the highest priority
process (and therefore cannot be interrupted except by an exception or NMI). At the conclusion
of the initialization code, the execution priority is typically reduced, often to 0, to allow all other
tasks to run. It is also recommended that the reset vector set the SM bit to 1, so that execution
begins in System Mode.

4.3 System Configuration Register

The System Configuration Register (SCR), described in Figure 4.5, sets XA global operating
mode. SCR is intended to be written once during system start-up and left alone thereafter. Four
bits are currently defined:

T T T I T T T
SCR - - - - ’PT1 PTO CM PZ

Figure 4.5 System Configuration Register (SCR)

PZ set to O (the default) puts the XA in the Large-Memory mode that uses full 24-bit XA
addressing. When PZ = 1 the XA uses a small-memory “Page 0” mode that uses 16 bit
addresses. The intent of Page 0 mode is to save stack space and improve interrupt latency in
systems with less than 64K bytes of code and data memory. See the following sections for
details.

2/23/96 76 CPU Organization

CM chooses between standard “native” mode XA operation and 80C51 compatibility mode.
When CM is cleared, the XA operates as described in the first 8 chapters of this manual. When
CM is set, the XA operates as described in Chapter 9.

PT1 and PTO select a submultiple of the oscillator clock as a Peripheral Timing clock source, in
particular for timers but possibly for other peripherals in XA derivatives. Here are the values for
these bits and the resulting clock frequency:

PT1 PTO Peripheral Clock
0 0 oscillator/4

0 1 oscillator/16

1 0 oscillator/64

1 1 reserved

Other bits (marked with “-” in the register diagram) are reserved for possible future use.
Programs should take care when writing to registers with reserved bits that those bits are given
the value 0. This will prevent accidental activation of any function those bits may acquire in
future XA CPU implementations.

4.3.1 XA Large-Memory Model Description

When the default XA operation is chosen via the SCR (CM = 0 and PZ = 0), all addresses are
maintained by the core as 24 bit values, providing a full 16 MByte address space. On a specific
XA derivative, fewer than 24 bits may be available at the external bus interface. All 24 address
bits are pushed on the stack during calls and interrupts and 24 bits are popped by RETs and
RETIs.

4.3.2 XA Page 0 Memory Model Description

When XA Page 0 mode is chosen, only 16 address bits are maintained by the XA core. This
operating mode supports XA applications for which a 64K byte address space is sufficient. The
external memory interface port used for the upper 8 address bits, if present, is available for other
uses. A single 16-bit word is pushed on the stack during calls and interrupts and 16 bits are, in
turn popped by RETs and RETIs. Using Page 0 mode when only a small memory model is
needed saves stack space and speeds up address PUSH and POP operations on the stack.

Switching into or out of Page 0 mode after the original initialization is not recommended. First,
switching into Page 0 mode can only be done by code running on Page 0, since the code address
will be truncated to 16-bits as soon as Page 0 mode takes effect. Instructions already in the XA
pre-fetch queue would have been fetched prior to Page 0 mode taking effect. Any addresses that
may have been pushed onto the stack previously also become invalid when Page 0 mode is
changed. Thus Page 0 mode could not be changed while in an interrupt service routine, or any
subroutine.

XA User Guide 77 2/23/96

4.4 Reset

The term “reset” refers specifically to the hardware input required when power is first applied to
the XA device, and generally to the sequence of initialization that follows a hardware reset,
which may occur at any time. The term also refers to the effect of the RESET instruction (see
Chapter 6); in addition, an overflowing Watchdog timer (if this peripheral is present) has an
identical effect.

This section describes the XA reset sequence and its implications for user hardware and
software.

4.4.1 Reset Sequence Overview

A specific hardware reset sequence must be initiated by external hardware when the XA device
is powered-up, before execution of a program may begin. If a proper reset at power up is not
done, the XA may fail wholly or in part. The XA reset sequence includes the following
sequential components:

* Reset signal generated by external hardware

e Internal Reset Sequence occurs

» RST line goes high

* External bus width and memory configuration determined
* Reset exception interrupt generated

e Startup Code executed

Figure 4.6 illustrates this process.

| |
I
vdd | XA configuration signals sampled
| \ first instruction executed
| Vmin ¢
L .
I |
RST : |
XA !
| . [
| internal |
, reset |
sequence
reset exception
generated

Figure 4.6 XA power-up sequence

2/23/96 78 CPU Organization

4.4.2 Power-up Reset

This section describes the reset sequence for powering up an XA device.

The XA RST input must be held low for a minimum reset period after Vdd has been applied to
the XA device and has stabilized within specifications. The minimum reset period for a typical
system with a reasonably fast power supply ramp-up time is 10 milliseconds. This reset period
provides sufficient time for the XA oscillator to start and stabilize and for the CPU to detect the
reset condition. At this point, the CPU initiates an internal reset sequence. RST must continue to
be low for a sufficient time for the internal reset sequence to complete.

4.4.3 internal Reset Sequence

The XA internal reset sequence occurs after power-up or any time a sufficiently long reset pulse
is applied to the RST input while the XA is operating. This sequence requires a minimum of a
10 microseconds (or 10 clocks, whichever is greater) to complete, and RST must remain low for
at least this long.

The internal reset sequence does the following:

* Writes a 00 to most core and many peripheral SFRs. Other values are written to some periph-
eral SFRs. Consult the data sheet of a specific device for details.

¢ Sets CS, DS, and ES to 0.

* Sets SSEL =0, i.e., sets all accesses through DS.

» Sets all registers in the Register File to 0.

¢ Sets the user and the system stack pointers (USP and SSP) to 0100h.

* Clears SCR bit PZ, i.e., 24-bit memory addresses will be used by default.

¢ Clears SCR bit CM, i.e., starts execution in XA Native Mode.

* Clears IE bit EA, disabling all maskable interrupts.

Note that the internal reset sequence does not initialize internal or external RAM. Note also that

PR S,

the contents of PSW at this puuu is not importaiit, as it will umuculatcxy be 1“p laced as
described further below.

The effect of the internal reset sequence on components outside the XA core depends on the
peripheral complement and configuration of the specific XA derivative. In general, the internal
reset sequence has the following effects:

» Sets all port pins to inputs (quasi-bidirectional output configuration with port value = FF hex)
* Clears most SFRs to 0

* Initializes most other SFRs to appropriate non-zero values

Note that serial port buffers, PCA capture registers, and WatchDog feed registers (if present) are
unaffected. Consult the XA derivative data sheet for more information.

After the XA internal reset sequence has been completed, the device is quiescent until the RST
line goes high.

XA User Guide 79 2/23/96

4.4.4 XA Configuration at Reset

As the RST line goes high, the value on two input pins is sampled to determine the XA memory
and bus configuration. The EA and BUSW pins (if present on a specific XA derivative) have
special function during the reset sequence, to allow external hardware to determine the use of
internal or external program memory, and to select the default external bus width.

Immediately after the RST line goes high, the CPU triggers a reset exception interrupt, as
described in the next section.

Selecting Internal or External Program Memory

The XA is capable of reading instructions from internal or external memory, both of which may
be present. The XA EA input pin determines whether internal or external program memory will
be used. The EA pin is sampled on the rising edge of the RST pulse. If EA = 0, the XA will
operate out of external program memory, otherwise it will use internal code memory. The
selection of external or internal code memory is fixed until the next time RST is asserted and
released; until then all code fetches will access the selected code memory.

The XA cannot detect inconsistencies between the setting detected on the EA input and the
hardware memory configuration. For example, setting EA = 1 on a ROMless XA variant will
cause the XA to attempt to execute internal code memory, which is undefined on a ROMless
device, typically resulting in a system failure.

Selecting External Bus Width

The XA is capable of accessing an 8 or 16 bit external data bus. The BUSW pin tells the XA the
external data bus configuration. BUSW=0 selects an 8-bit bus and BUSW=1 selects an 16-bit
bus. On power-up, the XA defaults to the 16-bit bus (due to an on-chip weak pull-up on
BUSW). The BUSW pin is sampled on the rising edge of the RST pulse. If BUSW is low, the
XA operates its external bus interface in 8 bit mode, otherwise, the XA uses 16 bit bus
operation. The bus width may also be set under software control on derivatives equipped with
the BCR (“Bus Configuration Register”’) SFR.

After RST is released, the BUSW pin'may be used an alternate function on some XA

derivatives. Consult derivative data sheets for exact pinouts and details of how pins such as
these may be shared to keep package size small.

2/23/96 80 CPU Organization

4.4.5 The Reset Exception Interrupt

Immediately after the RST line goes high, the CPU generates a Reset Exception Interrupt. As a
result, the initial PSW and address of the first instruction (the “start-up code”) is fetched from
the reset vector in code memory at location 0. Here’s an example in generalized assembler
format of the setup for the Reset Exception:

code_seg ; establish code segment
org Oh ; start at address 0

; reset_vector

dw initial_PSW ; define a word constant
dw startup_code ; define a word constant
org 120h ; move to address 120h

; (above vector table)

startup_code:
; put startup code here

The initial value of PSWL set in the Reset Vector is generally of no special system-wide
importance and may be set to zero or some other value to meet special needs of the XA
application. The initial PSWH value sets the stage for system software initialization and its
value requires more attention. Here’s an example set of declarations that create the
recommended initial value of PSWH:

system_mode equ 8000h
max_priority equ OF00h
initial_PSW equ system_mode + max_priority

It is generally appropriate to initialize the XA in System Mode so that the start-up code has
unrestricted access to the entire architecture. This is done by using a initial value that sets the
PSWH bit SM.

Philips recommends initializing the execution priority of the start-up code to the highest possible
value of 15 (that is, IMO through IM3 to all ones) so that the start-up code is recognizable as the
highest priority process. As described above, the hardware initialization sequence turns off all
possible interrupts, so the only potential interrupting process would arise from a non-maskable
interrupt (NMI). It is generally a good idea to prevent NMI generation with a hardware lock-out
until XA start-up procedures are completed.

The PSWH initialization value given in this example sets System Mode (SM), selects register
bank O (any register bank could be used) and clears TM so that Trace Mode is inactive.

XA User Guide 81 2/23/96

4.4.6 Startup Code

Philips recommends that the first instruction of start-up code set the value of the System
Configuration Register (SCR), described in section 4.3, to reflect the system architecture.

The next recommended step is explicitly initializing the stack pointers. The default values
(section 4.7) are usually insufficient for application needs.

The start-up code sequence may be concluded by a simple branch or jump to application code. A
RETI may not be used at the conclusion of a Reset Exception Interrupt handler (which causes

the start-up code to run) because a reset initializes the SP and does not leave an interrupt stack
frame.

4.4.7 Reset Interactions with XA Subsystems

The following describes how the reset process interacts with some key subsystems:

» Trace Exception. The trace exception is aborted by an external reset; see section 4.9.

* WatchDog. In XA derivatives equipped with a WatchDog timer feature, RST will be asserted
for at least a derivative-defined number of cycles. The RST pin is driven low for this period.

* Resets while in Idle Mode. Since the XA oscillator is running in Idle Mode, the RST input
must be kept low for only 10 microseconds (or 10 clocks, whichever is greater) to achieve a
complete reset.

* Resets while in Power-Down Mode. The XA oscillator is stopped in Power-Down mode, so
the RST input must be low for at least 10 milliseconds.

4.4.8 An External Reset Circuit

The RST pin is a high-impedance Schmitt trigger input pin. For applications that have no special
start-up requirements, it is practical to generate a reset period known to be much longer than that
required by the power supply rise time and by the XA under all foreseeable conditions. One
simple way to build a reset circuit is illustrated in Figure 4.7.

Vdd Some typical values for R and C:
R R = 100K, C = 1.0uF
RST XA R=1M,C =0.1uF
C (assuming that the Vdd rise time is
I 1 millisecond or less)

Figure 4.7 An external reset circuit

2/23/96 82 CPU Organization

4.5 Oscillator

The XA contains an on-chip oscillator which may be used as the clock source for the XA CPU,
or an external clock source may be used. A quartz crystal or ceramic resonator may be
connected as shown in Figure 4.8a to use the internal oscillator. To use an external clock,
connect the source to pin XTAL1 and leave pin XTAL2 open, as shown in Figure 4.8b.

I—"[_ XTALT LI — x7AL1
C1

== XA XA
c2 —[!
- XTAL2 nc— XTAL2
a) using the on-chip oscillator b) using an externai clock

Figure 4.8 XA clock sources

The on-chip oscillator of the XA consists of a single stage linear inverter intended for use as a
positive reactance oscillator. In this application, the crystal is operated in its fundamental
response mode as an inductive reactance in parallel resonance with capacitance external to the
crystal.

A quartz crystal or ceramic resonator is connected between the XTAL1 and XTAL2 pins,
capacitors ar connected from both pins to ground. In the case of a quartz crystal, a parallel
resonant crystal must be used in order to obtain reliable operation. The capacitor values used in
the oscillator circuit should normally be those recommended by the crystal or resonator
manufacturer. For crystals, the values may generally be from 18 to 24 pF for frequencies above
25 MHz and 28 to 34 pF for lower frequencies. Too large or too small capacitor values may
prevent oscillator start-up or adversely affect oscillator start-up time. Generally, the minimum
crystal frequency will be 3 MHz and the maximum will be the specified maximum operating
frequency of a particular XA device. Maximum frequencies for ceramic resonators tend to be
lower, typically about 24 MHz.

4.6 Power Control

The XA CPU implements two modes of reduced power consumption: Idle mode, for moderate
power savings, and Power-Down mode. Power-Down reduces XA consumption to a bare
minimum. These modes are initiated by writing SFR PCON, as illustrated in Figure 4.9.

PCON | - - - - - - PD IDL

Figure 4.9 PCON

XA User Guide 83 2/23/96

Idle Mode is activated by setting the PCON bit IDL. This stops CPU execution while leaving
the oscillator and some peripherals running.

Power-Down mode is activated set by setting the PCON bit PD. This shuts down the XA
entirely, stopping the oscillator.

The reset values of IDL and PD are 0. If a 1 is written to both bits simultaneously, PD takes
precedence and the XA goes into Power-Down mode.

Other bits (marked with “-” in the register diagram) are reserved for possible future use.
Programs should take care when writing to registers with reserved bits that those bits are given
the value 0. This will prevent accidental activation of any function those bits may acquire in
future XA CPU implementations.

4.6.1 Idle Mode

Idle mode stops program execution while leaving the oscillator and selected peripherals active.
This greatly reduces XA power consumption. Those peripheral functions may cause interrupts
(if the interrupt is enabled) that will cause the processor to resume execution where it was
stopped.

In the Idle mode, the port pins retains their logical states from their pre-idle mode. Any port pins
that may have been acting as a portion of the external bus revert to the port latch and
configuration value (normally push-pull outputs with data equal to 1 for bus related pins). ALE
and PSEN are held in their respective non-asserted states. When Idle is exited normally (via an
active interrupt), port values and configurations will remain in their original state.

4.6.2 Power-Down Mode

Power-Down mode stops program execution and shuts down the on-chip oscillator. This stops
all XA activity. The contents of internal registers, SFRs and internal RAM are preserved.
Further power savings may be gained by reducing XA Vdd to the RAM retention voltage in
Power Down mode; see the device data sheet for the applicable Vdd value. The processor may
be re-activated by the assertion of RST or by assertion of one of an external interrupt, if enabled.
When the processor is re-activated, the oscillator will be restarted and program execution will
resume where it left off.

In Power-Down mode, the ALE and PSEN outputs are held in their respective non-asserted
states. The port pins output the values held by their respective SFRs. Thus, port pins that are not
configured to be part of an external bus retain their state. Any port pins that may have been
acting as a portion of the external bus revert to the port latch and configuration value (normally
push-pull outputs with data equal to 1 for bus related pins). If Power-Down mode is exited via
Reset, all port values and configurations will be set to the default Reset state.

If Power-Down mode is exited via an external interrupt, port values and configurations will
remain in their original state. Since the XA oscillator is stopped when the XA leaves Power-
Down mode via an interrupt, time must be allowed for the oscillator to re-start. Rather than force
the external logic asserting the interrupt to remain active during the oscillator start-up time, the

2/23/96 84 CPU Organization

XA implements its own timer to insure proper wake-up. This timer counts 9,892 oscillator
clocks before allowing the XA to resume program execution, thus insuring that the oscillator is
running and stable at that time.

Note that if an external oscillator is used, power supply current reduction in the Power-Down
mode is reduced from what would be obtained when using the XA on-chip oscillator. In this
case, full power savings may be gained by turning off the external clock source or stopping it
from reaching the XTALI pin of the XA. If the clock source may be turned off, it may be
advantageous to use Idle mode rather than Power-Down mode, to allow more ways of
terminating the power reduction mode and to avoid the 9,892 clock waiting period for exiting
Power-Down mode.

4.7 XA Stacks

The XA stacks are word-aligned LIFO data structures that grow downward in data memory,
from high to low address. This and some other details of the XA stack implementation differ
from 80C51 stack operation. Refer to the chapter on 8051 compatibility for a detailed discussion
of this topic.

The XA implements two distinct stacks, one for User Mode and one for System Mode. The User
Stack may be placed anywhere in data memory, while the System Stack must be located in the
first 64K bytes, i.e., segment 0.

4.7.1 The Stack Pointers

The XA has two stacks, the system stack and the user stack. Each stack has an associated stack
pointer, the System Stack Pointer (SSP) and the User Stack Pointer (USP), respectively. Only
one of these stacks is active at a given time. The current stack pointer at any instant (which may
be the SSP or the USP) appears as word register R7 in the register file; the other stack pointer
will not be visible. The value of the PSW bit SM determines which stack is active (and whose
stack pointer therefore appears as R7) . In User Mode (SM = 0), R7 contains the User Stack
Pointer. In System Mode (SM =1), R7 contains the System Stack Pointer. The XA automatically
switches SSP and USP values when the operating mode is changed. Note that the terms “USP”
and “SSP” are logical terms, denoting the value of R7 in each mode.

Segments and Protection

The User stack is always addressed relative to the current data segment (DS) value. This is
consistent with each user task being associated with a specific data segment. Moreover, code
running in User Mode cannot modify DS, so there is no possibility of changing the segment in
which the stack resides within the User context. The System Stack must always be located in
segment 0, that is, the first 64K of data memory.

4.7.2 PUSH and POP

The PUSH operation is illustrated by Figure 4.10. The stack pointer always points to an existing
data item at the top of the stack, and is decremented by 2 prior to writing data.

XA User Guide 85 2/23/96

The POP operation copies the data at the top of the stack and then adds two to the stack pointer,
as follows shown in Figure 4.11.

All stack pushes and pops occur in word multiples. If a byte quantity is pushed on the stack it is
stored as the least significant byte of a word and the high byte is left unwritten;

see Figure 4.12. A POP to a byte register removes a word from the stack and the byte register
receives the least significant 8 bits of the word, as shown in Figure 4.13.

MOV RO,#1234h
before PUSH RO after
2n+6 existing'data &SP 2n+6 existing'data
2n+4 (empty) n+4| 12 34 |e—sP
2n+2 (en'npty) 2n+2 (empty)
(empty) (empty)
Figure 4.10 PUSH operation
before POPRI after
2n+6 2n+6 <&— SP
2n+4 AA 55 — SP 2n+4 AA 55
2n +2 (empty) 2n + 2 (empty)
(empty) (empty)
R1=AA55h
Figure 4.11 POP operation
MOV R1#686%h
before POP RIH after
2n+6 2n+6 —SP
2n+4| AA 55 «—SP n+4| AA 55
2n +2 (empty) 2n +2 (empty)
(empty) (empty)
R1 =5569h
Figure 4.12 POP a byte
2/23/96

86 CPU Organization

The stack should always be word-aligned. If R7 is modified to an odd value, the offending LSB
of the stack pointer is ignored and the word at the next-lower even address is accessed.

Note that neither PUSH or POP operations have any effect on the PSW flags.

MOV RO0,#9876h
before PUSH ROH after
2n+6 existing'data l— SP n+6 existing'data
2n +4 (err:lpty) n + 4 00 98 l@«— SP
2n+2 (empty) 2n+2 (empty)
(empty) . (empty)

Figure 4.13 PUSH a byte

4.7.3 Stack-Based Addressing

Stack-based data addressing is fully supported by the XA. RO through R7 may be used in all
indexed address modes; the stack pointer in R7 is equally valid as an index.

Figure 4.14 illustrates an example of stack-based addressing.The segment used for stack relative
addressing is always the same as for other stack operations (Segment O for System mode code
and DS for User mode code). Note that the precautions mentioned in section 3.3.4 apply here:
when referencing a word quantity, the final (effective) address must be even, otherwise incorrect
data will be accessed. This topic is discussed further in the section Stack Pointer Misalignment.

4.7.4 Stack Errors

Special attention is required to avoid problems due to stack overflow, stack underflow, and stack
pointer misalignment

Stack Overflow

Stack overflow occurs when too many items are pushed, either explicitly or as the result of
interrupts. As items are pushed on to the stack, it may grow downward past the memory
allocated to it. It is not always possible for programs to detect stack overflow, so the XA triggers
a Stack Overflow Exception Interrupt whenever the value of the current stack pointer (SSP or
USP) decrements from 80h to 7Eh (simply setting SP to a value lower than 80h would NOT
cause a stack overflow). This value was chosen so that stack space sufficient to handle a stack
overflow exception interrupt is always guaranteed, as follows:

The 80h limit leaves 64 bytes available for stack overflow processing. A worst case might be
occurs when the Stack Pointer is at 80h and a program executes an 8 word push; this generates a
stack overflow. If an NMI occurs at the same time, 3 additional words are pushed. The balance
of the 64 bytes on the stack is available for handler processing, which should carefully limit
further use of the stack.

XA User Guide 87 2/23/96

MOV Rn, [R7+offset]
MOV [R7+offset], Rn

|SMbitin PSW | e~ 76 bit offset

SP (R7)

|
. . 16-bit pointer
(from instruction) I')

8-bit segment !
DS| "~ identifier 0

00h 1

8 bits 16 bits]

Data Memory complete 24-bit

memory address

SP+38]
SP+6]
[SP+4
[SP+2
[SP+0]

Figure 4.14 Stack-based addressing

Stack Underflow

Stack underflow occurs when too many items are popped and the stack pointer value becomes
greater than its initial value, i.e., the stack top. The XA does not support stack underflow
detection.

Stack Pointer Misalignment

Pointer misalignment occurs when a pointer contains an odd value and is used by an instruction
to access a word value in memory. The same situation could occur if some program action
forced the stack pointer to an odd value. In these cases, the XA ignores the bottom bit of the
pointer and continues with a word memory access.

4.7.5 Stack Initialization

At power-on reset, both USP and SSP in all XA derivatives are initialized to 100h, that is, one
byte past the minimum on-chip XA RAM space (256 bytes). Since SP is pre-decremented, the
first PUSH operation will store a word at location FEh and the stack will grow downwards from
there.

2/23/96 88 CPU Organization

These default stack pointer start-up values overlap the System and User stacks and are
applicable only when one of these stacks will never be used.

Since the System stack is used for all exception and interrupt processing, this may not be
appropriate in all XA applications. The startup code should normally set new and different
values of both USP and SSP.

4.8 XA Interrupts

The XA architecture defines four kinds of interrupts. These are listed below in order of intrinsic
priority:

* Exception Interrupts
* Event Interrupts

* Software Interrupts
* Trap Interrupts

Exception interrupts reflect system events of overriding importance. Examples are stack
overflow, divide-by-zero, and Non-Maskable Interrupt. Exceptions are always processed
immediately as they occur, regardless of the priority of currently executing code.

Event interrupts reflect less critical hardware events, such as a UART needing service or a timer
overflow. Event interrupts may be associated with some on-chip device or an external interrupt
input. Event interrupts are processed only when their priority is higher than that of currently
executing code. Event interrupt priorities are settable by software.

Software interrupts are an extension of event interrupts, but are caused by software setting a
request bit in an SFR. Software interrupts are also processed only when their priority is higher
than that of currently executing code. Software interrupt priorities are fixed at levels from 1
through 7.

Trap interrupts are processed as part of the execution of a TRAP instruction. So, the interrupt
vector is always taken when the instruction is executed.

All forms of interrupts trigger the same sequence: First, a stack frame containing the address of
the next instruction and then the current value of the PSW is pushed on the System Stack. A
vector containing a new PSW value and a new execution address is fetched from code memory.
The new PSW value entirely replaces the old, and execution continues at the new address, i.e., at
the specific interrupt handler.

The new PSW value may include a new setting of PSW bit SM, allowing handler routines to be
executed in System or User mode, and a new value of PSW bits IM3 through IMO, reflecting
the execution priority of the new task. These capabilities are basic to multi-tasking support on
the XA. See Chapter 5 for more details.

XA User Guide 89 2/23/96

Returns from all interrupts should in most cases be accomplished by the RETI instruction, which
pops the System Stack and continues execution with the restored PSW context. Since RETI
executed while in User Mode will result in an exception trap, as described further below,
interrupt service routines will normally be executed in System Mode.

The XA architecture contains sophisticated mechanisms for deciding when and if an interrupt
sequence actually occurs. As described below, Exception Interrupts are always serviced as soon
as they are triggered. Event Interrupts are deferred until their execution priority is higher than
that of the currently executing code. For both exception and event interrupts, there is a
systematic way of handling multiple simultaneous interrupts. Software and trap interrupts occur
only when program instructions generating them are executed so there is no need for conflict
resolution.

The Non-Maskable Interrupt requires special consideration. It is generated outside the XA core,
and in that respect is an event interrupt. However, it shares many characteristics of exception
interrupts, since it is not maskable. Note that NMI, while part of the XA CPU core, may not
always be connected to a pin or other event source on all XA derivatives.

4.8.1 Interrupt Type Detailed Descriptions

This section describes the four kinds of interrupts in detail.

Exception Interrupts

Exception interrupts reflect events of overriding importance and are always serviced when they
occur. Exceptions currently defined in the XA core include: Reset, Breakpoint, Divide-by-0,
Stack overflow, Return from Interrupt (RETI) executed in User Mode, and Trace. Ten additional
exception interrupts are reserved. NMI is listed in the table of exception interrupts (Table 4.1)
below because NMI is handled by the XA core in same manner as exceptions, and factors into
the precedence order of exception processing.

Since exception interrupts are by definition not maskable, they must always be serviced
immediately regardless of the priority level of currently executing code, as defined by the IM
bits in the PSW. In the unusual case that more than one exception is triggered at the same time,
there is a hard-wired service precedence ranking. This determines which exception vector is
taken first if multiple exceptions occur. In these cases, the exception vector taken last may be
considered the highest priority, since its code will execute first. Of course, being non-maskable,
any exception occurring during execution of the ISR for another exception will still be serviced
immediately.

Programmers should be aware of the following when writing exception handlers:
1. Since another exception could interrupt a stack overflow exception handler routine, care
should be taken in all exception handler code to minimize the possibility of a destructive stack

overflow. Remember that stack overflow exceptions only occur once as the stack crosses the
bottom address limit, 80h.

2/23/96 90 CPU Organization

2. The breakpoint (caused by execution of the BKPT instruction, or a hardware breakpoint in an
emulation system) and Trace exceptions are intended to be mutually exclusive. In both cases,
the handler code will want to know the address in user code where the exception occurred. If a
breakpoint occurs during trace mode, or if trace mode is activated during execution of the
breakpoint handler code, one of the handlers will see a return address on the stack that points
within the other handler code.

Table 4.1: Exception interrupts, vectors, and precedence

Exception Interrupt Vector Address Service Precedence

Breakpoint 0004h:0007h 0
Trace 0008h:000Bh 1
Stack Overflow 000Ch:000Fh 2
Divide-by-zero 0010h:0013h 3
User RETI 0014h:0017h 4
<reserved> 0018h - 003Fh 5
NMI 009Ch:009Fh 6
Reset 0000h:0003h 7

(always serviced

immediately, aborts
other exceptions)

Event Interrupts

Event Interrupts are typically related to on-chip or off-chip peripheral devices and so occur
asynchronously with respect to XA core activities. The XA core contains no inherent event
interrupt sources, so event interrupts are handled by an interrupt control unit that resides on-chip
but outside of the processor core.

On typical XA derivatives, event interrupts will arise from on-chip peripherals and from events
detected on interrupt input pins. Event interrupts may be globally enabled/disabled via the EA
bit in the Interrupt Enable register (IE) and individually masked by specific bits the IE register
or its extension. When an event interrupt for a peripheral device is disabled but the peripheral is
not turned off, the peripheral interrupt flag can still be set by the peripheral and an interrupt will
occur if the peripheral is re-enabled. An event interrupt that is enabled is serviced when its
execution priority is higher than that of the currently executing code. Each event interrupt is
assigned a priority level in the Interrupt Priority register(s). If more than one event interrupt
occurs at the same time, the priority setting will determine which one is serviced first. If more
than one interrupt is pending at the same level priority, a hardwares precedence scheme is used
to choose the first to service. Consult the data sheet for a specific XA derivative for details.

Note that, like all other forms of interrupts, the PSW (including the Interrupt Mask bits) is
loaded from the interrupt vector table when an event interrupt is serviced. Thus, the priority at

which the interrupt service routine executes could be different than the priority at which the

XA User Guide 91 2/23/96

interrupt occurred (since that was determined not by the PSW image in the vector table, but by
the Interrupt Priority register setting for that interrupt). Normally, it is advisable to set the
execution priority in the interrupt vector to be the same as the Interrupt Priority register setting
that will be used in the program.

Software Interrupts

Software Interrupts act just like event interrupts, except that they are caused by software writing
to an interrupt request bit in an SFR. The standard implementation of the software interrupt
mechanism provides 7 interrupts which are associated with 2 Special Function Registers. One
SFR, the software interrupt request register (SWR), contains 7 request bits: one for each
software interrupt. The second SFR is an enable register (SWE), containing one enable bit
matching each software interrupt request bit.

Software interrupts have fixed interrupt priorities, one each at priorities 1 through 7. These are
shown in Table 4.2 below. Software Interrupts are defined outside the XA core and may not be
present on all XA derivatives; consult the specific XA derivative data sheet for details.

Table 4.2: Software interrupts, vectors, and fixed priorities

Software Interrupt Vector Address Fixed Priority
SWIH 0100h:0103h 1
SWiI2 0104h:0107h 2
SWI3 0108h:010Bh 3
SWi4 010Ch:010Fh 4
SWI5 0110h:0113h 5
SWi6 0114h:0117h 6
SWi7 0118h:011Bh 7

The primary purpose of the software interrupt mechanism is to provide an organized way in
which portions of event interrupt routines may be executed at a lower priority level than the one
at which the service routine began. An example of this would be an event Interrupt Service
Routine that has been given a very high priority in order to respond quickly to some critical
external event. This ISR has a relatively small portion of code that must be executed
immediately, and a larger portion of follow-up or “clean-up” code which does not need to be
completed right away. Overall system performance may be improved if the lower priority
portion of the ISR is actually executed at a lower priority level, allowing other more important
interrupts to be serviced.

If the high priority ISR simply lowers its execution priority at the point where it enters the
follow-up code, by writing a lower value to the IM bits in the PSW, a situation called “priority
inversion” could occur. Priority inversion describes a case where code at a lower priority is
executing while a higher priority routine is kept waiting. An example of how this could occur by
writing to the IM bits follows, and is illustrated in Figure 4.15.

2/23/96 92 CPU Organization

Suppose code is executing at level O and is interrupted by an event interrupt that runs at level 10.
This is again interrupted by a level 12 interrupt. The level 12 ISR completes a time-critical
portion of its code and wants to lower the priority of the remainder of its code (the non-time
critical portion) in order to allow more important interrupts to occur. So, it writes to the IM bits,
setting the execution priority to 5. The ISR continues executing at level 5 until a level 8 event
interrupt occurs. The level 8 ISR runs to completion and returns to the level 5 ISR, which also
runs to completion. When the level 5 ISR returns, the previously interrupted level 10 ISR is re-
activated and eventually competes.

It can be seen in this example that lower priority ISR code executed and completed while higher
priority code was kept waiting on the stack. This is priority inversion.

Level 10 Level 12 Priority Level8 Returnto Returnto Returnto
interrupt interrupt lowered interrupt level 5 level 10 level O
occurs occurs ‘ occurs ‘ : :

'

i
i ' !
' ' N
' ' '
i ' '
f '
' '
' '

'
'
'
.
'
'
[
'
'
'
'
'
'

Execution
Priority

Time

Figure 4.15 Exampie of priority inversion (see text)

In those cases where it is desirable to alter the priority level of part of an ISR, a software
interrupt may be used to accomplish this without risk of priority inversion. The ISR must first be
split into 2 pieces: the high priority portion, and the lower priority portion. The high priority
portion remains associated with the original interrupt vector. The lower priority portion is
associated with the interrupt vector for software interrupt 5. At the completion of the high
priority portion of the ISR, the code sets the request bit for software interrupt 5, then returns. the
remainder of the ISR, now actually the ISR for software interrupt 5, executes when it becomes
the highest priority pending interrupt.

The diagram in figure 4.16 shows the same sequence of events as in the example of priority
inversion, except using software interrupt 5 as just described. Note that the code now executes in
the correct order (higher priority first).

Trap Interrupts

Trap Interrupts are generated by the TRAP instruction. TRAP 0 through TRAP 15 are defined
and may be used as required by applications. Trap Interrupts are intended to support application-

XA User Guide 93 2/23/96

Level 10 Level 12 Software Level8 Return Return Returnto
interrupt interrupt interrupt interrupt from level fromlevel level 0
occurs occurs 5issued, occurs, level 10, 8, level5 i

. : returnto butwaits level 8 software ,
level 10 forlevel interrupt interrupt

[
[
1
'
'
'
'

: 10to serviced serviced .
124 comp?lete : :
10- i ' ' ! 5
8 .
Execution
Priority
0- ..

Time

Figure 4.16 Example use of software interrupt (see text)

specific requirements, as a convenient mechanism to enter globally used routines, and to allow
transitions between user mode and system mode. A trap interrupt will occur if and only if the
instruction is executed, so there is no need for a precedence scheme with respect to simultaneous
traps.

See Chapter 6 for a detailed description of the TRAP instruction.

4.8.2 Interrupt Service Data Elements

There are two data elements associated with XA interrupts. The first is the stack frame created
when each interrupt is serviced. The second is the interrupt vector table located at the beginning
of code memory. Understanding the structure and contents of each is essential to the
understanding of how XA interrupts are processed.

Interrupt Stack Frame

A stack frame is generated, always on the System Stack, for each XA interrupt. With one
exception, the stack frame is stored for the duration of interrupt service and used to return to and
restore the CPU state of the interrupted code. (The exception is an Exception Interrupt triggered
by a Reset event. Since Reset re-initializes the stack pointers, no stack frame is preserved. See
section 4.4 for details.) The stack frame in the native 24-bit XA operating mode is illustrated in
Figure 4.17. Three words are stored on the stack in this case. The first word pushed is the low-
order 16 bits of the current PC, i.e., the address of the next instruction to be executed. The next
word contains the high-order byte of the current PC. A zero byte is used as a pad. In sum, a
complete 24-bit address is stored in the stack frame. The third word contains a copy of the PSW
at the instant the interrupt was serviced.

When the XA is operating in Page 0 Mode (SCR bit PZ = 1) the stack frame is smaller because,
in this mode, only 16 address bits are used throughout the XA. The stack frame in Page 0 Mode

2/23/96 94 CPU Organization

is illustrated in Figure 4.18. Obviously it is very important that stack frames of both sizes not be
mixed; this is one reason for the admonition in section 4.3 to set the System Configuration
Register once during XA initialization and leave it unchanged thereafter.

_— D

Before interrupt
Low-order ;16-bits of PC
6-bytes 0x00 PC (hi-byte)
PSW <t SSP | After
== ==

Figure 4.17 Interrupt stack frame (non- page zero mode)

™ ==

16-bits of PC
4-bytes :

PSW After

Before interrupt

Figure 4.18 Interrupt stack frame (page 0 mode)

Interrupt Vector Table

The XA uses the first 284 bytes of code memory (addresses O through 11B hex) for an interrupt
vector table. The table may contain up to 71 double-word entries, each corresponding to a
particular interrupt event.

The double-word entries each consist of a 16 bit address of an interrupt service routine address
and a 16 bit PSW replacement value. Because vector addresses are 16-bit, the first instruction of
service routines must be located in the first 64K bytes of XA memory. The first instruction of all
service routines must be word-aligned. Key elements of the replacement PSW value are the
choice of System or User mode for the service routine, the Register Bank selection, and an
Execution Priority setting. For more details on PSW elements, see section 4.2.2.

The first 16 vectors, starting at code memory address 0 are reserved for Exception Interrupt
vectors. The second 16 vectors are reserved for Trap Interrupts. The following 32 vectors in the
table are reserved for Event Interrupts. The final 7 vectors are used for Software Interrupts.
Figure 4.19 illustrates the XA vector table and the structure of each component vector. Of the

XA User Guide 95 2/23/96

vectors assigned to Exceptions, 6 are assigned to events specific to the XA CPU and 10 are
reserved. All 16 Trap Interrupts may be used freely. Assignments of Event Interrupt vectors are
derivative-independent and vary with the peripheral device complement and pinout of eacl: XA
derivative.

— 7 Software—
— Interrupt—]
[Vectors—]
0100kh n

32
Event—
—Interrupt—]
— Vectors —]

- 16 bits >

P
n ,

Service Rouiine Address

80h

Replacerﬁent PSW

—— 16— -
—— Trap——
—Interrupt—
F— Vectors —

T
M

Increasing
addresses

40h

16 ;
— Exception—
—— Vectors —

Code Memory

Figure 4.19 Interrupt vectors

Unused interrupt vector locations should typically be set to point to a “null” service routine (an
RETI instruction), rather than be overwritten by executable instructions. This is especially true

of the exception interrupts and NMI, since these could conceivably occur in a system where the
designer did not expect them. If these vectors are routed to an RETI instruction, the system can
essentially ignore the unexpected exception or interrupt condition and continue operation.

4.9 Trace Mode Debugging

The XA has an optional Trace Mode in which a special trace exception is generated at the
conclusion of each instruction. Trace Mode supports user-supplied debugger/monitor programs
which can single-step through any code, even code in ROM.

2/23/96 96 CPU Organization

4.9.1 Trace Mode Operation
Trace Mode is initiated by asserting PSW.TM in the context of the program to be traced.
Using Trace Mode requires a detailed understanding of the XA instruction execution sequence

because when and if a trace exception occurs depends on events within the execution sequence
of a single instruction. Figure 4.20 illustrates the XA instruction sequence in overview.

Instruction n-1 Instruction n Instruction n+1
eee YY)

Figure 4.20 XA Instruction Sequence Overview

A detailed model of this sequence is shown in Figure 4.21: First, at the beginning of the
instruction cycle, the state of the TM flag is latched. Next, the instruction is checked to see if it
is valid; undefined instructions or disallowed operations (like a write through ES in User Mode)
are simply not executed, and there is no chance for a trace to occur. The sequence then checks
for instructions illegal in the current context (currently only an IRET while in User Mode is
detected here) and services an exception if one is found. If, and only if, none of these special
conditions occur, the instruction is actually executed. Just after execution, if the Trace Mode bit
had been latched TRUE at the beginning of the instruction cycle, the Trace is serviced. Finally,
the cycle checks for a pending interrupt and performs interrupt service if one is found

' Instruction n »l

N 3 ¢
latch ; " Instruction Execute ; » !
—_— instruction » » 9 » Check latch; nterrupt
™ allowed? illegal? ¥ Instruction T TM=1? pending?
state l Y l v l Y
service service service
exception trace interrupt

Figure 4.21 Instruction Execution Cycle Detail

Note that an external reset may occur at any point during the cycle illustrated in Figure 4.21.
This will abort processing when it occurs.

One consequence of this sequence is that the instruction that sets TM = 1 cannot generate a
Trace, since TM is not latched when the instruction is actually executed. Another consequence is
that an instruction that generates an exception will never be traced. Finally if an event interrupt
occurs during an instruction cycle when the instruction being executed is a TRAP, the TRAP
will be executed, then the trace service, and finally the interrupt will be serviced.

XA User Guide 97 2/23/96

4.9.2 Trace Mode Initialization and Deactivation

Since PSW.TM is in the protected portion of the PSW (i.e., in PSWH), only code executing in
System Mode can initiate or turn off Trace Mode. In practice, this may be done by invoking a
trap whose replacement PSW clears this bit, or by executing a RETI instruction with a synthetic
Exception/Interrupt stack frame explicitly pushed on the top of the System Stack, as follows:

Lo-order 16-bits of PC . .
; - address of next instruction
0x00 + PC (hi-byte) in traced routine
PSwW

TM set in saved PSW image

Tracing will continue until the PSW bit TM is cleared. This may be done by the trace service
routine by examining the stack frame at the top of the system stack and clearing the TM bit prior
to returning to the currently traced process. A similar method may be used to initiate trace mode.
Note that stack frames generated by exception interrupts are always placed on the System stack.
It is probably a good idea for the trace service routine to verify that the item in the stack frame is
consistent with the traced process before modifying the TM bit.

2/23/96 98 CPU Organization

5 Real-time Multi-tasking

Multi-tasking as the name suggests, allows tasks, which are pieces of code that do specific
duties, to run in an apparently concurrent manner. This means that tasks will seem to all run at
the same time, doing many specific jobs simultaneously.

High end applications (like automotive) require instantaneous responses when dealing with high
speed events, such as engine management, traction control and adaptive braking system (ABS)
and hence there is a trend towards multi-tasking in a wide variety of high performance
embedded control applications.

Real-time application programs are often comprised of multiple tasks. Each task manages a
specific facet of application program. Building a real-time application from individual tasks
allows subdividing a complicated application program into independent and manageable
modules. Each task shares the processor with other tasks in the application program according to
an assigned priority level.

In real-time mnlh_chlnng’ the main concern is the svstem

411 ACQITULLC LUIATLASSaI] L ilial LA RS o1

overhead. Switching tasks invo
moving lots of data of the terminated and initiated tasks, and extensive book-keeping to be able
to restore dormant tasks when required. Thus it is extremely crucial to minimize the system
overhead as much as possible. In some cases, some of the tasks may be associated with real-time

response, which further complicates the requirements from the system.

The following section analyzes the requirements and the XA suitability to these applications.

5.1 Assist For Multitasking in XA

The XA has numerous provisions to support multi-tasking systems. The architecture provides
direct support for the concept of a multi-tasking OS by providing two (System/User) privilege
levels for isolation between tasks. High performance, interrupt driven, multi-tasking applications
systems requiring protection are feasible with the XA.

The XA architecture offers the following features which will appeal to multi-tasking
implementations.

5.1.1 Dual stack approach

The architecture defines a System Stack Pointer (SSP) as well as an User Stack Pointer (USP).
The dual stack feature supports fast task switching, and ease the creation of a multi-tasking
monitor kernel. The separation of the two offers a reduction is storing and retrieving stack
pointers or using a single stack, when switching to the kernel and back to an application. It also
serves to speed up interrupt processing in large systems with external data memory. User stacks
can be allocated in the slower external memory, while system memory is in internal SRAM,
allowing for fast interrupt latency in this environment. The dual stack approach also adds the
benefit of a better potential to recover from an ill-behaved task, since the system stack is still
intact when an error is sensed.

2/23/96 99 Multi-tasking

5.1.2 Register Banks

The XA also supports 4 banks of 8 byte/4 word registers, in addition to 12 shared registers. In
some applications, the register banks can be designated statically to tasks, cutting significantly
on the overhead for saving and restoring registers on context switching.

5.1.3 Interrupt Latency and Overhead

Interrupt latency is extremely critical in a multitasking environment. For a real-time
multitasking environment, a fast interrupt response is crucial for switching between tasks. The
XA is designed to provide such fast task switching environment through improved interrupt
latency time.

The interrupt service mechanism saves the PC (1 or 2 words, depending on the PageO mode flag
PZ) and the PSW (1 word) on the stack. The interrupt stack normally resides in the internal data
memory, and interrupt call including saving of three words takes 23 clocks. Prefetching the
service routine takes 3 additional clocks.

When interrupt or an exception/trap occurs, the current instruction in progress always gets
executed prior servicing the interrupt. This present an overhead, while increasing the effective
interrupt latency, since the event that interrupted the machine cannot be dealt with before the
book-keeping is completed. In XA, the longest uninterrupted instruction is the signed 32x16

Divide, which takes 24 clocks.

This puts the worst case interrupt latency at [24 + 23 + 3] = 50 clocks (3.125 microseconds at
16.0 MHz, 2.5 microseconds at 20.0 MHz, and 1.67 microseconds at 30.0 MHz). Saving the
state of the lower registers can be done by simply switching the register bank.

In the general case, up to 16 registers would be saved on the stack, which takes 32 clocks. The
total latency+overhead at start of an interrupt is a maximum of 68 clocks (4.25 microsecond at
16 MHz, 3.4 at 20 MHz and 2.27 at 30 MHz). This allows for extremely fast context switching
for multitasking environments.

5.1.4 Protection

The issue is mentioned here simply to clarify what is and what is not supported by the XA
architecture. Dual stack pointer and minor privileges to what looks like a supervisor mode do
not mean full protection. It is assumed that code in a microcontroller does not require guarding
from intentional system break-in by a lower privilege task. A table of the protected features in
XA is given below.

XA User Guide 100 2/23/96

Protected Features in the XA

Table 5.1: Segment and Stack Register Protection

. : Write
. Write . Write Read Read Read .
Write Write Write to
Mode through through | through | through | through
to DS DS to ES ES DS ES SSP to SSP :EI_EIL

System || Allowed | Allowed | Allowed | Allowed | Allowed | Allowed | Allowed | Allowed | Allowed

User Disal- Allowed | Allowed | Select- Allowed | Allowed | Not Not Disal-
lowed able 1 possible | possible | lowed

Note 1: The MSB of SSEL (bit 7) selects whether write through ES is allowed in User mode.
However, this bit is accessible only in System mode.

Table 5.2: PSW bit protection

Mode !\{:lte to SM !\Lr{te to RSO0:1 Write to TM bit \Ll\fﬂte to IMO:3
Dt DILS DItS

System Allowed Allowed Allowed Allowed

User Disallowed Allowed Disallowed Disallowed

Protection Via Data Memory Segmentation

In User/Application mode, each task is protected from all others via the separation of data
spaces (unless explicit sharing is planned in advance). If the address spaces of two tasks include
no shared data, one task cannot affect the data of another, but it can read any data in the full

address space. Code sharing is always safe since code memory may never be written!. An
application mode program is prohibited from writing the segment registers, thus confining the
writable area per an ill-behaved task to its dedicated segment. Most applications, which are not
expected to utilize multi-tasking or use external memory, do not require any protection. They
will remain after reset in system mode, and could access all system resources.

At any given instant, two segments of memory are immediately accessible to an executing XA
program. These are the data segment DS, where the stack and local variables reside, and the
extra segment ES, which may be used to read remote data structures. Restricting the
addressability of task modules helps gain complete control of system resources for efficient,
reliable operation in a multi-tasking environment.

1. True for non-writable code memory only like EPROM, ROM, OTP. This might change for FLASH parts.

2/23/96 101 Multi-tasking

Protection Via Dual Stack Pointers

The XA provides a two-level user/supervisor protection mechanism. These are the user or
application mode and the system or supervisor mode. In a multitasking environment, tasks in a
supervisor level are protected from tasks in the application level.

The XA has two stack pointers (in the register file) called the System Stack Pointer (SSP) and
the User Stack Pointer (USP). In multitasking systems one stack pointer is used for the
supervisory system and another for the currently active task. This helps in the protection
mechanism by providing isolation of system software from user applications. The two stack
pointers also help to improve the performance of interrupts. If the stack for a particular
application would exceed the space available in the on-chip RAM, or on-chip RAM is needed
for other time critical purposes (since on-chip RAM is accessed more quickly than off-chip
memory), the main stack can be put off-chip and the interrupt stack (using the System SP) may
be put in on-chip RAM.

These features of the XA place it well above the competition in suitability to multi-tasking
applications.

XA User Guide 102 2/23/96

6 Instruction Set and Addressing

This section contains information about the addressing modes and data types used in the XA.
The intent is to help the user become familiar with the programming capabilities of the
processor.

6.1 Addressing Modes

Addressing modes are ways to form effective addresses of the operands. The XA provides seven
basic powerful addressing modes for access on word, byte, and bit data, or to specify the target
address of a branch instruction. These basic addressing modes are uniformly available on a large
number of instructions. Table 6-1 includes the basic addressing modes in the XA. An instruction
could use a combination of these basic addressing modes, e.g., ADD RO, #020 is a combination
of Register and Immediate addressing modes.

All modes (non-register) generate ADDR[15:0]. This address is combined with DS/ES[23:16]
for data and PC/CS[23:16] for code to form a 24-bit address!.

An XA instruction can have zero, one, two, or three operands, whose locations are defined by
the addressing mode. A destination operand is one that is replaced by a result, or is in some way
affected by the instruction. The destination operand is listed first in an addressing mode
expression. A source operand is a value that is moved or manipulated by the instruction, but is
not altered. The source is listed second in an addressing mode expression.

Table 6.1 Basic Addressing Modes

MODE MNEMONIC OPERANDS
Register R operand(s) in register (in Register file)
Indirect [R] Byte/Word whose 16-bit address is in R
Indirect-Offset [R+off 8/16] Byte or Word data whose address (16-bit) contained in R, is
offset by 8/16-bit signed integer “off 8/16’
Direct mem_addr Byte/Word at given memory “mem_addr’
SFR1 sfr_addr Byte/Word at “sfr_addr’ address
Immediate #data 4/5 Immediate 4/5 and 8/16-bit integer constants “data8/16”
#data 8/16
Bit bit 10-bit address field specifying Register File, Data Memory or
SFR bit address space

1. This is a special case of direct addressing mode but separately identified, as SFR space is sepa-
rate from data memory.

1. Exception is Page 0 mode, where all addresses are 16-bit.

2/23/96

103

Addressing Modes and Data Types

6.2 Description of the Modes

6.2.1 Register Addressing

Instructions using this addressing mode contain a field that addresses the Register File that
contains an operand. The Register file is bytez, word, double-word or bit addressable.

Example: ADD R6, R4 Before: R4 contains 005Ah
R6 contains ASASh
After: R4 contains 005Ah
R6 contains ASFFh
REGISTER - REGISTER
DESTINATION
ALU — ™ ASFFh (result) R6

AS5AS5h (original contents)

SOURCE

005Ah R4

ADD R6,R4 REGISTER FILE

Figure 6.1

2. The unimplemented 8 word registers are not Byte addressable

XA User Guide 104 2/23/96

6.2.2 Indirect Addressing

Instructions using this addressing mode contain a 16-bit address field. This field is contained in
1 out of 8 pointer registers in the Register File (that contain the 16-bit address of the operand in
any 64K data segment). For data, the segment is identified by the 8-bit contents of DS or the ES
and for code by the 8-bit contents of PC23-16 or CS as selected by the appropriate bit (SSEL.bit
n = 0 selects DS and 1 selects ES for data and SSEL.bitn = O selects PC and 1 selects CS for
code) in the segment select register SSEL corresponding to the indirect register number. The
address of the pointer word for word operands should be even

Example: ADD R6, [R4] Before: R6 contains 1005h
SSEL4=1 R4 contains AOOOh
i.e., the operand is in Word at AOOOh contains A5ASh
segment determined
by the contents of ES After: R4 contains AOOOh
So, if ES = 08, the R6 contains BSAAh
operand is in Word at AOOOh in segment 8
segment 8 of data memory. of data memory contains ASASh

REGISTER - INDIRECT

B5AAh (result)
1005h R6

- L— I~ [POINTER
A5A5h oo ADOC R4

OH
DATA MEMORY REGISTER FILE
ADD R6, [R4]
Figure 6.2
2/23/96 105

Addressing Modes and Data Types

6.2.3 Indirect-Offset Addressing

This addressing mode is just like the Register-Indirect addressing mode above except that an
additional displacement value is added to obtain the final effective address. Instructions using
this addressing mode contain a 16-bit address field and an 8 or 16-bit signed displacement field.
This field addresses 1 out of 8 pointer registers in the Register File that contains the 16-bit
address of the operand in any 64K data segment. The contents of the pointer register are added

to the signed displacement to obtain the effective address’ (which must be even) of the operand.
For data the segment is identified by the 8-bit contents of DS or the ES and for code, by the 8-bit
contents of PC23-16 or CS as selected by the appropriate bit (SSEL.bit n = 0 selects DS and 1
selects ES for data and SSEL.bitn = 0 selects PC and 1 selects CS for code) in the segment
select register SSEL.

Example: ADD RS, [R3 +30h] Before: R3 contains CO00h
SSEL.3=1 RS contains 0065h
i.e., the operand is in Word at C030h = A540h
segment determined
by the contents of ES After: R3 contains CO00h
So, if ES = 04, the RS contains ASASh
operand is in segment Word at CO30h = A540h
4 of data memory.
REGISTER - INDIRECT WITH OFFSET
DESTINATION
% 0065h E— ASASh |R5
[[set | SSEL3 =1}
FFFFh - ' : ‘4_{
ES=4
AS540h POINTER R3
C030h C000h
Oh
DATA MEMORY REGISTER FILE
ADD RS5, [R3+30]
0030h
Figure 6.3

3. In case of an odd address, the XA forces the operand fetch from the next lower even boundary
(address.bit0 = 0)

XA User Guide 106 2/23/96

6.2.4 Direct Addressing

Instructions using this addressing mode contain an 10-bit address field, which contains the
actual address of the operand in any 64K data memory segment or sfr space.The direct address
data memory space is always the bottom 1K byte (0:3FFh) of any segment. The associated data
segment is always identified by the 8-bit contents of DS.

Example: SUB RO, 200h Before: RO contains ASFFh
If DS = 02, the 200H contains 5555h
operand is in segment
2 of data memory.

After: RO contains S0AAh
200h contains 5555h

REGI - DIRECT

Seg2

FFFFh <—i DS =2h

ALU

SOURCE
5555h 200h

Oh

DATA MEMORY
ASFFh DESTINATION

| SOAAh (result) ' RO

REGISTER FILE

SUB RO, 200h

Figure 6.4

2/23/96 107 Addressing Modes and Data Types

6.2.5 SFR Addressing

This is identical to the direct addressing mode described before, except it addresses the 1K SFR

space. Although encoded into the same instruction field as the direct addressing described

above, this is actually a separate space. Instructions using this addressing mode contain an 10-bit
SFR address. The 1K SFR space is always directly addressed (400:7FFh) and is mapped directly

above the 1K direct-addressed RAM space.

Example: MOV ROH, 406h* Before: ROH contains 05h
406h contains A5h

After: ROH contains ASh
406h contains ASh

6.2.6 Immediate Addressing

In immediate addressing, the actual operand is given explicitly in the instruction.The immediate
operand is either an 4/5, 8 or 16-bit integer which constitutes the source operand. 4-bit short

immediate operands used with instructions ADDS and MOVS are sign extended.

Example: ADD ROL,#0B%h Before: RO contains 13h
After: ROL contains CCh

REGISTER - IMMEDIATE DESTINATION

-

CCh (result)

13h
ALU

ADD ROL, #B%h

Boh

ROL

IMMEDIATE DATA

Figure 6.5

4. The syntax always refers to the SFR address starting from the base address of 400H.

XA User Guide 108

2/23/96

6.2.7 Bit Addressing

Instructions using the bit addressing mode contain a 10-bit field containing the address of the bit
operand. The XA supports three bit address spaces, which are encoded into the same format. The
spaces are: 256 bits in the register file (the entire active register file); 256 bits in the data memory

(byte addresses 20 through 3F hex on the cutrent data segment); and 512 bits in the SFR space (byte
addresses 400 through 43F hex).

Bit addresses 0 to FF hex map to the register file, bit addresses 100 to 1FF hex map to data memory,
and bit addresses 200 to 3FF map to the SFR space.

A separate bit-addressable space (20-3F hex) in the direct-address data memory, exists for each
segment. The current working segment for the direct-address space being always identified by the
DS register.

The encoding of the 10-bit field for bit addresses is as follows:

This bit determines 5 or 6 bit field (6 bits
whether the bit address is for an SFR)
an SFR or not (1 = SFR). identifies the byte
that the addressed bit
resides in.
/ AN

If not an SFR bit address, this bit 3-bit field identifies 1
determines whether the bit of 8 bits in a byte.
address is in the Register File or

the data memory (0 = Register

file, 1 = data memory).

Bit Address Encoding
Examples:
For a given data segment,
1001100 010 = Bit 2 of an SFR at address OCh (i.e., 40Ch in the map)
0 001100 010 = Bit 2 of Register file at address OCh, i.e., R6H
0101100 010 = Bit 2 of Data memory address 0Ch

Figure 6.6

2/23/96 109 Addressing Modes and Data Tvpes

6.3 Relative Branching and Jumps

Program memory addresses as referenced by Jumps, Calls, and Branch instructions must be word
aligned in XA. For instance, a branch instruction may occur at any code address, but it may only
branch to an even address. This forced alignment to even address provides three benefits:

» Branch ranges are doubled without providing an extra bit in the instruction and

o Faster execution as XA always fetches first two byte of an instruction simultaneously.

e Allows translated 8051 code to have branches extended over intervening code that will tend to
grow when translated and generally increase the chances of a branch target being in that
range.

The rel8 displacement is a 9-bit two’s complement integer which is encoded as 8-bits that
represents the relative distance in words from the current PC to the destination PC. Similarly, the
rel16 displacement is a 17-bit twos complement integer which is encoded as 16-bits. The value of
the PC used in the target address calculation is the address of the instruction following the Branch,
Jump or Call instruction.

The 8-bit signed displacement is between -128 to +127. The branch range for rel8 is (sample
calculation shown below) is really +254 bytes to -256 bytes for instructions located at an even
address, and +253 to -257 for the same located at an odd address, with the limitation that the target
address is word aligned in code memory.

The 16-bit signed displacement is -32,768 to +32,767. The branch range is therefore +65,534 bytes
to -65,536 bytes for instructions located at an even address, and +65,533 to -65,537 for the same
located at an odd address, with the limitation that the target address is word aligned in code
memory.

Sample calculation for rel8 range:

Assuming word aligned branch target, forward range as measured from current PC is:

Branch Target Address - Current PC
Now, maximum positive signed 8-bit displacement = +127; So, rel8 << 1 is +254

If Current PC = ODD, then

Range =254 - 1 =+253 as PC is forced to an even location, else
If current PC = EVEN, then

Range = +254

Similarly, reverse range as measured from current PC is:

Branch Target Address - Current PC
Now, maximum positive signed 8-bit displacement = -128; So, rel8 << 1 is -256

If Current PC = ODD, then

Range =-257
Else if current PC = EVEN, then
Range = -256

YA Tlear Cinide 110 2/23/96

6.4 Data Types in XA

The XA uses the following types of data:

* Bits

e 4/5-bit signed integers

» 8-bit (byte) signed and unsigned integers

» 8-bit, two digit BCD numbers

* 16-bit (word) signed and unsigned integers

* 10-bit address for bit-addressing in data memory and SFR space

» 24-bit effective address comprising of 16-bit address and 8-bit segment select. See addressing
modes for more information.

A byte consists of 8-bits. A word is a 16-bit value consisting of two contiguous bytes. A double
word consists of two 16-bit words packed in two contiguous words in memory.

Negative integers are represented in twos complement form. 4-bit signed integers (sign extended
to byte/word) are used as immediate operands in MOVS and ADDS instructions.

Binary coded decimal numbers are packed, 2 digits per byte. BCD operations use byte operands.

6.5 Instruction Set Overview

The XA uses a powerful and efficient instruction set, offering several different types of
addressing modes. A versatile set of “branch” and “jump” instructions are available for
controlling program flow based on register or memory contents. Special emphasis has been
placed on the instruction support of structured high-level languages and real-time multi-tasking
operating systems.

This section discusses the set of instructions provided in the XA microcontroller, and also shows
how to use them. It includes descriptions of the instruction format and the operands used by the
instructions. After a summary of the instructions by category, the section provides a detailed
description of the operation of each instruction, in alphabetical order.

Five summary tables are provided that describes the available instructions. The first table is a
summary of instructions available in the XA along with their common usage. The second and
third table are tables of addressing modes and operands, and the instruction type they pertain to.
A fourth table that lists the summary of status flags update by different instructions. A fifth table
lists the available instructions with their different addressing modes and briefly describes what
each instruction does along with the number of bytes, and number of cycles required for each
instruction.

The formats have been chosen to optimize the length and execution speed of those instructions
that would be used the most often in critical code. Only the first and sometimes the second byte
of an instruction are used for operation encoding. The length of the instruction and the first
execution cycle activity are determined from the first byte. Instruction bytes following the first
two bytes (if any) are always immediate operands, such as addresses, relative displacements,
offsets, bit addresses, and immediate data.

2/23/96 111 Addressing Modes and Data Tvnes

Glossary of mnemonics, notations used

General:

offset8
offset16

direct
#datad4

#datas
#data8
#datal6
bit

rel8
rell6
addrl6
addr24
SP
USP
SSP

C

AC

A\

N

Z

DS

ES

direct

An 8-bit signed offset (immediate data in the instruction) that is added to a register to
produce an absolute address.
A 16-bit signed offset (immediate data in the instruction) that is added to a register to
produce an absolute address.
An 11-bit immediate address contained in the instruction.
4 bits of immediate data contained in the instruction. (range +7 to -8 for
signed immediate data and 0-15 for shifts)
5 bits of immediate data contained in the instruction. (0-31 for shifts)
8 bits of immediate data contained in the instruction. (+127 to -128)
16 bits of immediate data contained in the instruction. (+32,767 to -32,768)
The 10-bit address of an addressable bit.
An 8-bit relative displacement for branches. (+254 to -256)
An 16-bit relative displacement for branches.(+65,534 to -65,536)
A 16-bit absolute branch address within a 64K code page.
A 24-bit absolute branch address, able to access the entire XA address space.
The current Stack Pointer (User or System) depending on the operation mode.
The User Stack Pointer.
The System Stack Pointer
Carry flag from the PSW.
Auxiliary Carry flag from the PSW.
Overflow flag from the PSW.
Negative flag from the PSW.
Zero flag from the PSW.
Data segment register. Holds the upper byte of the 24-bit data address space of the XA.
Used mainly for local data segments.
Extra segment register. Holds the upper byte of the 24-bit data address space of the XA.
Used mainly for addressing remote data structures.
Uses the current DS for data memory for the upper byte of the 24-bit address or none
(uses only the low 16-bit address) for accessing the special functions register (SFR)
space. The interpretation should be as below:
if (data range)
then (direct = (DS:direct)
if (sfr range)
then (direct) = (sfr)

Operation encoding fields:

Data Size. This field encodes whether the operation is byte, word or double-word.
This field flags indirect operation in some instructions.

This field selects whether PUSH and POP Rlist use the upper or lower half of the
available registers.

Destination register field, specifies one of 16 registers in the register file.

Destination register field for indirect references, specifies one of 8 pointer registers in
the register file.

Source register field, specifies one of 16 registers in the register file.

Source register field for indirect references, specifies one of 8 pointer registers in the
register file.

YA Tlear Guiide 112 2/723/96A

Mnemonic text:

Rs Source register.

Rd Destination register.

[1] In the instruction mnemonic, indicates an indirect reference (e.g.: [R4] refers to the
memory address pointed to by the contents of register 4).

[R+] Used to indicate an automatic increment of the pointer register in some indirect

addressing modes.

[WS:R] Indicates that the pointer register (R) is extended to a 24-bit pointer by the selected
segment register (either DS or ES for all instructions except MOVC, which uses either
PC23_16 or CS)

Rlist A bitmap that represents each register in the register file during a PUSH or POP
operation. These registers are RO-R7 for word or ROL-R7H for byte.

Pseudocode:

() Used to indicate "contents of" in the instruction operation pseudocode (e.g.: (R4) refers
to the contents of register 4).

<--- Pseudocode assignment operator. Occasionally used as <--> to indicate assignment in
both directions (interchange of data).

((SP)) Data memory contents at the location pointed to by the current stack pointer. In system

mode, the current SP is the SSP, and the segment used is always segment 0. In user
mode, the current SP is the USP, and the segment used is the Data Segment (DS). This
segment apply to the uses of the SP, not just PUSH and POP. In a few cases, “((SSP))”
or “((USP))” indicate that a specific SP is used, regardless of the operating mode.

Rn.x Indicates bit x of register n.
Rn.x-y Indicates a range of bits from bit x to bit y of register n.

Note: all indirect addressing is accomplished using the contents of the data segment register as the
upper 8 address bits unless otherwise specified. Example: [ES:Rs] indicates that the extra segment
register generates the upper 8 bits of the address in this case.

Cycle time:

PZ - In Page O
nt - Not Taken
t - Taken

Syntax For Operand size:
.w = For word operands

.b = byte operands
.d = double-word operands

Default operand size is dependant on the operands used e.g MOV RO,R1 is always word-size

whereas MOV ROL, ROH is always byte etc. For INDIRECT_IMMEDIATE,
DIRECT_IMMEDIATE, DIRECT_DIRECT, etc., user must specify operand size.

2/23/96 113 Addressing Modes and Data Types

Others

0x = prefix for Hex values

[1 = For indirect addressing

[[1] = For Double-indirect addressing
dest = destination

Src = source

Table 6.2 Instruction Set in XA

Mnemonic Usage
MOV, MOVC, MOVS, MOVX, LEA, XCH, PUSH, POP, Data Movement
PUSHU, POPU
ADD, ADDS, ADDC, SUB, SUBB Add and Subtract
MULU.b, MULU.w, MUL.w Multiply and Divide
DIVU.b, DIVU.w, DIVU.d, DIV.w, DIV.d
RR, RRC, RL, RLC, LSR, ASR, ASL, NORM Shifts and Rotates
CLR, SETB, MOV, ANL, ORL Bit Operations
JB, JBC, JNB, JNZ, JZ, DJNZ, CJNE, Conditional Jumps/Calls
BOV, BNV, BPL, BCC, BCS, BEQ, BNE, BG, BGE, Conditional Branches
BGT, BL, BLE, BLT, BMI
AND, OR, XOR Boolean Functions
JMP, FUMP, CALL, FCALL, BR Unconditional Jumps/Calls/Branches
RET, RETI Return from subroutines, interrupts
SEXT, NEG, CPL, DA Sign Extend, Negate, Complement, Decimal Adjust
BKPT, TRAP#, RESET Exceptions
NOP No Operation

XA User Guide 114 2/23/96

Table 6.3 shows a summary of the basic addressing modes available for data transfer and
calculation related instructions.

Table 6.3 Instruction Addressing Modes

odew, || wowx | wov | cue | A0 | SUE, |on | A0S | MU | i | xcr | myes
R,R 2
R, [R] >
[R], R 2
R, [R+off8] 3
[R+off8], R 3
R, [R+off16] 4
[R+off16], R 4
R, [R+] 2
[R+], R 2
[R+], [R+] . 2
dir, R 3
R, dir 3
dir, [R] . 3
[R], dir . 3
R, #data 2*/3/4
[R], #data 2*/3/4
[R+], #data 2*/3/4
[R+o0ff8], 3 3*/4/5
#data
[R+off16], 4*/5/6
#data
dir, #data 3*/4/5
dir, dir . 4
R, USP 3 2
Notes:

- Shift class includes rotates, shifts, and normalize.

- USP = User stack pointer.

*: ADDS and MOVS uses a short immediate field (4 bits).

** instructions with no operands include: BKPT, NOP, RESET, RET, RETI.

2/23/96 115 Addressing Modes and Data Types

Modes/ MOvC PUSH | DA, SEXT | JUMP | DJNZ | CJINE BIT MISC | bytes
Operands POP CPL,NEG | CALL OPS
R, [R+] . >
[R+], R . 2
A, . 2

[A+DPTR]

A, [A+PC] . 2
direct . 3
Rlist . 2

R . 2
addr24 . 4
[R] . >

[A+DPTR] JMP 2
R, rel . 3

direct, rel . 4

R, direct, rel . 4
R, #data, rel . 4/5
[R], #data, . 4/5
rel
bit . 3

bit, C; C, bit . 3

C, /bit . 3

rel . Cond. 2
Branch

bit, rel Cond. 4
Branch

#data4 TRAP 2

R, R+off8 LEA 3

r, R+off16 LEA 4

<none> ** . 1/2

Notes:

- Shift class includes rotates, shifts, and normalize.
- USP = User stack pointer.

* . ADDS and MOVS uses a short immediate field (4 bits).
** instructions with no operands include: BKPT, NOP, RESET, RET, RETIL

XA User Guide 116

2/23/96

Table 6.4 summarizes the status flag updates for the various XA instruction types.

Table 6.4 Status Flag Updates

Flags Updated
Instruction Type
C AC Vv N z

ADD, ADDC, CMP, SUB, SUBB X X X X X
ADDS, MOVS - - - X X
AND, OR, XOR - - - X X
ASR, LSR * . . X X
branches, all bit operations, NOP - - - - -
Calls, Jumps, and Returns - - - - -
CJINE X - - X X
CPL - - - X X
DA * - - X X
DIV, MUL * - * X X
DJINZ - -] X X
LEA - - - - -
MOV, MOVC, MOVX - - - X X
NEG - - X X X
NORM - - ; X X
PUSH, POP - - - - -
RESET . * * B *

RL, RR - - -

RLC, RRC * - -
SEXT - - - - -
TRAP, BKPT - - - - -
XCH - - - - -
ASL * - X X X

Notes:
-: flag not updated.

X: flag updated according to the standard definition.
*: flag update is non-standard, refer to the individual instruction description.
Note: Explicit writes to PSW flags takes precedence over flag updates.

2/23/96 117 Addressing Modes and Data Types

Instruction Set Summary

Table 6.5 lists the entire XA instruction set by instruction type. This can be used as a quick
reference to find specific instructions that may be looked up in the detailed alphabetical description

section.
Table 6.5
Mnemonic Description Bytes | Clocks

Arithmetic Operations

ADD Rd, Rs Add registers direct 2 3

ADD Rd, [Rs] Add register-indirect to register 2 4

ADD [Rd], Rs Add register to register-indirect 2 4

ADD Rd, [Rs+offset8] Add register-indirect with 8-bit offset to 3 6
register

ADD [Rd+offset8], Rs Add register to register-indirect with 8-bit 3 6
offset

ADD Rd, [Rs+offset16] Add register-indirect with 16-bit offset to 4 6
register

ADD [Rd+offset16], Rs Add register to register-indirect with 16-bit 4 6
offset

ADD Rd, [Rs+] Add register-indirect with auto increment to 2 5
register

ADD [Rd+], Rs Add register-indirect with auto increment to 2 5
register

ADD direct, Rs Add register to memory 3 4

ADD Rd, direct Add memory to register 3 4

ADD Rd, #data8 Add 8-bit immediate data to register 3 3

ADD Rd, #data16 Add 16-bit immediate data to register 4 3

ADD [Rd], #data8 Add 8-bit immediate data to register-indirect 3 4

ADD [Rd], #data16 Add 16-bit immediate data to register-indirect 4 4

ADD [Rd+], #data8 Add 8-bit immediate data to register-indirect 3 5
with auto-increment

ADD [Rd+], #data16 Add 16-bit immediate data to register- 4 5
indirect with auto-increment

ADD [Rd+offset8], #data8 Add 8-bit immediate data to register-indirect 4 6
with 8-bit offset

ADD [Rd+offset8], #data16 Add 16-bit immediate data to register- 5 6
indirect with 8-bit offset

XA User Guide 118 2/23/96

Table 6.5

Mnemonic Description Bytes | Clocks

ADD [Rd+offset16], #data8 Add 8-bit immediate data to register-indirect 5 6
with 16-bit offset

ADD [Rd+offset16], #data16 | Add 16-bit immediate data to register- 6 6
indirect with 16-bit offset

ADD direct, #data8 Add 8-bit immediate data to memory 4 4

ADD direct, #data16 Add 16-bit immediate data to memory 5 4

ADDC Rd, Rs Add registers direct with carry 2 3

ADDC Rd, [Rs] Add register-indirect to register with carry 2 4

ADDC [Rd], Rs Add register to register-indirect with carry 2 4

ADDC Rd, [Rs+offset8] Add register-indirect with 8-bit offset to 3 6
register with carry

ADDC [Rd+offset8], Rs Add register to register-indirect with 8-bit 3 6
offset with carry

ADDC Rd, [Rs+offset16] Add register-indirect with 16-bit offset to 4 6
register with carry

ADDC [Rd+offset16], Rs Add register to register-indirect with 16-bit 4 6
offset with carry

ADDC Rd, [Rs+] Add register-indirect with auto increment to 2 5
register with carry

ADDC [Rd+], Rs Add register-indirect with auto increment to 2 5
register with carry

ADDC direct, Rs Add register to memory with carry 3 4

ADDC Rd, direct Add memory to register with carry 3 4

ADDC Rd, #data8 Add 8-bit immediate data to register with 3 3
carry

ADDC Rd, #data16 Add 16-bit immediate data to register with 4 3
carry

ADDC [Rd], #data8 Add 16-bit immediate data to register- 3 4
indirect with carry

ADDC [Rd], #data16 Add 16-bit immediate data to register- 4 4
indirect with carry

ADDC [Rd+], #data8 Add 8-bit immediate data to register-indirect 3 5
and auto-increment with carry

ADDC [Rd+], #data16 Add 16-bit immediate data to register- 4 5
indirect and auto-increment with carry

ADDC [Rd+offset8], #data8 Add 8-bit immediate data to register-indirect 4 6
with 8-bit offset and carry

2/23/96

119 Addressing Modes and Data Types

Table 6.5

Mnemonic Description Bytes | Clocks

ADDC [Rd+offset8], #data16 Add 16-bit immediate data to register- 5 6
indirect with 8-bit offset and carry

ADDC [Rd+offset16], #data8 Add 8-bit immediate data to register-indirect 5 6
with 16-bit offset and carry

ADDC [Rd+offset16], #data16 | Add 16-bit immediate data to register- 6 6
indirect with 16-bit offset and carry

ADDC direct, #data8 Add 8-bit immediate data to memory with 4 4
carry

ADDC direct, #data16 Add 16-bit immediate data to memory with 5 4
carry

ADDS Rd, #data4 Add 4-bit signed immediate data to register 2 3

ADDS [Rd], #data4 Add 4-bit signed immediate data to register- 2 4
indirect

ADDS [Rd+], #data4 Add 4-bit signed immediate data to register- 2 5
indirect with auto-increment

ADDS [Rd+offset8], #data4 Add register-indirect with 8-bit offset to 4-bit 3 6
signed immediate data

ADDS [Rd+offset16], #data4 Add register-indirect with 16-bit offset to 4- 4 6
bit signed immediate data

ADDS direct, #data4 Add 4-bit signed immediate data to memory 3 4

ASL Rd, Rs Logical left shift destination register by the 2 See
value in the source register Note1

ASL Rd, #data4 Logical left shift register by the 4-bit 2 See
immediate value Note1

ASR Rd, Rs Arithmetic shift right destination register by 2 See
the count in the source Note1

ASR Rd, #data4 Arithmetic shift right register by the 4-bit 2 See
immediate count Note1

CMP Rd, Rs Compare destination and source registers 2 3

CMP [Rd], Rs Compare register with register-indirect 2 4

CMP Rd, [Rs] Compare register-indirect with register 2 4

CMP [Rd+offset8], Rs Compare register with register-indirect with 3 6
8-bit offset

CMP [Rd+offset16], Rs Compare register with register-indirect with 4 6
16-bit offset

CMP Rd, [Rs+offset8] Compare register-indirect with 8-bit offset 3 6
with register

XA User Guide

120

2/23/96

Table 6.5

Mnemonic Description Bytes | Clocks

CMP Rd,[Rs+offset16] Compare register-indirect with 16-bit offset 4 6
with register

CMP Rd, [Rs+] Compare auto-increment register-indirect 2 5
with register

CMP [Rd+], Rs Compare register with auto-increment 2 5
register-indirect

CMP direct, Rs Compare register with memory 3 4

CMP Rd, direct Compare memory with register 3 4

CMP Rd, #data8 Compare 8-bit immediate data to register 3 3

CMP Rd, #data16 Compare 16-bit immediate data to register 4 3

CMP [Rd], #data8 Compare 8 -bit immediate data to register- 3 4
indirect

CMP [Rd], #data16 Compare 16-bit immediate data to register- 4 4
indirect

CMP [Rd+], #data8 Compare 8-bit immediate data to register- 3 5
indirect with auto-increment

CMP [Rd+], #data16 Compare 16-bit immediate data to register- 4 5
indirect with auto-increment

CMP [Rd+offset8], #data8 Compare 8-bit immediate data to register- 4 6
indirect with 8-bit offset

CMP [Rd+offset8], #data16 Compare 16-bit immediate data to register- 5 6
indirect with 8-bit offset

CMP [Rd+offset16], #data8 Compare 8-bit immediate data to register- 5 6
indirect with 16-bit offset

CMP [Rd+offset16], #data16 | Compare 16-bit immediate data to register- 6 6
indirect with 16-bit offset

CMP direct, #data8 Compare 8-bit immediate data to memory 4 4

CMP direct, #data16 Compare 16-bit immediate data to memory 5 4

DA Rd Decimal Adjust byte register 2 4

DIV.w Rd, Rs 16x8 signed register divide 2 14

DIV.w Rd, #data8 16x8 signed divide register with immediate 3 14
word

DIV.d Rd, Rs 32x16 signed double register divide 2 24

DIV.d Rd, #data16 32x16 signed double register divide with 4 24
immediate word

DIVUb Rd,Rs 8x8 unsigned register divide 2 12

2/23/96 121 Addressing Modes and Data Tvnes

Table 6.5

Mnemonic Description Bytes | Clocks

DIVU.b Rd, #data8 8X8 unsigned register divide with immediate 3 12
byte

DIVUw Rd, Rs 16X8 unsigned register divide 2 12

DIVU.w Rd, #data8 16X8 unsigned register divide with 3 12
immediate byte

DIVUd Rd, Rs 32X16 unsigned double register divide 2 22

DIVU.d Rd, #data16 32X16 unsigned double register divide with 4 22
immediate word

LEA Rd, Rs+offset8 Load 16-bit effective address with 8-bit 3 3
offset to register

LEA Rd, Rs+offset16 Load 16-bit effective address with 16-bit 4 3
offset to register

MULw Rd, Rs 16X16 signed multiply of register contents 2 12

MUL.w Rd, #data16 16X16 signed multiply 16-bit immediate data 4 12
with register

MULU.b Rd, Rs 8X8 unsigned multiply of register contents 2 12

MULU.b. Rd, #data8 8X8 unsigned multiply of 8-bit immediate 3 12
data with register

MULU.w Rd, Rs 16X16 unsigned register multiply 2 12

MULU.w Rd, #data16 16X16 unsigned multiply 16-bit immediate 4 12
data with register

NEG Rd Negate (twos complement) register 2 3

SEXT Rd Sign extend last operation to register 2 3

SuB Rd, Rs Subtract registers direct 2 3

SuUB Rd, [Rs] Subtract register-indirect to register 2 4

SuB [Rd], Rs Subtract register to registér—indirect 2 4

SuB Rd, [Rs+offset8] Subtract register-indirect with 8-bit offset to 3 6
register

sSuB [Rd+offset8], Rs Subtract register to register-indirect with 8- 3 6
bit offset

SUB Rd, [Rs+offset16] Subtract register-indirect with 16-bit offset to 4 6
register

SuB [Rd+offset16], Rs Subtract register to register-indirect with 16- 4 6
bit offset

SuB Rd, [Rs+] Subtract register-indirect with auto 2 5
increment to register

Amnmninr

Table 6.5

Mnemonic Description Bytes | Clocks

SuB [Rd+], Rs Subtract register-indirect with auto 2 5
increment to register

SUB direct, Rs Subtract register to memory 3 4

SUB Rd, direct Subtract memory to register 3 4

suB Rd, #data8 Subtract 8-bit immediate data to register 3 3

SuB Rd, #data16 Subtract 16-bit immediate data to register 4 3

SuB [Rd], #data8 Subtract 8-bit immediate data to register- 3 4
indirect

SuB [Rd], #data16 Subtract 16-bit immediate data to register- 4 4
indirect

SuUB [Rd+], #data8 Subtract 8-bit immediate data to register- 3 5
indirect with auto-increment

SuB [Rd+], #data16 Subtract 16-bit immediate data to register- 4 5
indirect with auto-increment

SuB [Rd+offset8], #data8 Subtract 8-bit immediate data to register- 4 6
indirect with 8-bit offset

SuUB [Rd+offset8], #data16 Subtract 16-bit immediate data to register- 5 6
indirect with 8-bit offset

SUB [Rd+offset16], #data8 Subtract 8-bit immediate data to register- 5 6
indirect with 16-bit offset

SuB [Rd+offset16], #data16 | Subtract 16-bit immediate data to register- 6 6
indirect with 16-bit offset

SuUB direct, #data8 Subtract 8-bit immediate data to memory 4 4

SuUB direct, #data16 Subtract 16-bit immediate data to memory 5 4

SuBB Rd, Rs Subtract with borrow registers direct 2 3

SUBB Rd, [Rs] Subtract with borrow register-indirect to 2 4
register

SUBB [Rd], Rs Subtract with borrow register to register- 2 4
indirect

SuUBB Rd, [Rs+offset8] Subtract with borrow register-indirect with 8- 3 6
bit offset to register

SuUBB [Rd+offset8], Rs Subtract with borrow register to register- 3 6
indirect with 8-bit offset

SUBB Rd, [Rs+offset16] Subtract with borrow register-indirect with 4 6
16-bit offset to register

SUBB [Rd+offset16], Rs Subtract with borrow register to register- 4 6
indirect with 16-bit offset

2/72/0A 172 Addreccino Madec and Data Tunec

Table 6.5

Mnemonic Description Bytes | Clocks

SuUBB Rd, [Rs+] Subtract with borrow register-indirect with 2 5
auto increment to register

SuBB [Rd+], Rs Subtract with borrow register-indirect with 2 5
auto increment to register

SUBB direct, Rs Subtract with borrow register to memory 3 4

SUBB Rd, direct Subtract with borrow memory to register 3 4

SUBB Rd, #data8 Subtract with borrow 8-bit immediate data to 3 3
register

SuBB Rd, #data16 Subtract with borrow 16-bit immediate data 4 3
to register

SUBB [Rd], #data8 Subtract with borrow 8-bit immediate data to 3 4
register-indirect

SuUBB [Rd], #data16 Subtract with borrow 16-bit immediate data 4 4
to register-indirect

SUBB [Rd+], #data8 Subtract with borrow 8-bit immediate data to 3 5
register-indirect with auto-increment

suBB [Rd+], #data16 Subtract with borrow 16-bit immediate data 4 5
to register-indirect with auto-increment

SuBB [Rd+offset8], #data8 Subtract with borrow 8-bit immediate data to 4 6
register-indirect with 8-bit offset

SUBB [Rd+offset8], #data16 Subtract with borrow 16-bit immediate data 5 6
to register-indirect with 8-bit offset

SUBB [Rd+offset16], #data8 Subtract with borrow 8-bit immediate data to 5 6
register-indirect with 16-bit offset

SuBB [Rd+offset16], #data16 | Subtract with borrow 16-bit immediate data 6 6
to register-indirect with 16-bit offset

SUBB direct, #data8 Subtract with borrow 8-bit immediate data to 4 4
memory

SuBB direct, #data16 Subtract with borrow 16-bit immediate data 5 4
to memory

Logical Operations

AND Rd, Rs Logical AND registers direct 2 3

AND Rd, [Rs] Logical AND register-indirect to register 2 4

AND [Rd], Rs Logical AND register to register-indirect 2 4

AND Rd, [Rs+offset8] Logical AND register-indirect with 8-bit offset 3 6

to register

VA TTame Maida

Table 6.5

Mnemonic Description Bytes | Clocks

AND [Rd+offset8], Rs Logical AND register to register-indirect with 3 6
8-bit offset

AND Rd, [Rs+offset16] Logical AND register-indirect with 16-bit 4 6
offset to register

AND [Rd+offset16], Rs Logical AND register to register-indirect with 4 6
16-bit offset

AND Rd, [Rs+] Logical AND register-indirect with auto 2 5
increment to register

AND [Rd+], Rs Logical AND register-indirect with auto 2 5
increment to register

AND direct, Rs Logical AND register to memory 3 4

AND Rd, direct Logical AND memory to register 3 4

AND Rd, #data8 Logical AND 8-bit immediate data to register 3 3

AND Rd, #data16 Logical AND 16-bit immediate data to 4 3
register

AND [Rd], #data8 Logical AND 8-bit immediate data to register- 3 4
indirect

AND [Rd], #data16 Logical AND16-bit immediate data to 4 4
register-indirect

AND [Rd+], #data8 Logical AND 8-bit immediate data to register- 3 5
indirect and auto-increment

AND [Rd+], #data16 Logical AND16-bit immediate data to 4 5
register-indirect and auto-increment

AND [Rd+offset8], #data8 Logical AND8-bit immediate data to register- 4 6
indirect with 8-bit offset

AND [Rd+offset8], #data16 Logical AND16-bit immediate data to 5 6
register-indirect with 8-bit offset

AND [Rd+offset16], #data8 Logical AND8-bit immediate data to register- 5 6
indirect with 16-bit offset

AND [Rd+offset16], #data16 | Logical AND16-bit immediate data to 6 6
register-indirect with 16-bit offset

AND direct, #data8 Logical AND 8-bit immediate data to memory 4 4

AND direct, #data16 Logical AND16-bit immediate data to 5 4
memory

CPL Rd Complement (ones complement) register 2 3

LSR Rd, Rs Logical right shift destination register by the 2 See
value in the source register Note 1

2/72/0A 17K A Advaccina Madac and Mata Troman

Table 6.5

Mnemonic Description Bytes | Clocks

LSR Rd, #data4 Logical right shift register by the 4-bit 2 See
immediate value Note 1

NORM Rd, Rs Logical shift left destination register by the 2 See
value in the source register until MSB set Note 1

OR Rd, Rs Logical OR registers 2 3

OR Rd, [Rs] Logical OR register-indirect to register 2 4

OR [Rd], Rs Logical OR register to register-indirect 2 4

OR Rd, [Rs+offset8] Logical OR register-indirect with 8-bit offset 3 6
to register

OR [Rd+offset8], Rs Logical OR register to register-indirect with 3 6
8-bit offset

OR Rd, [Rs+offset16] Logical OR register-indirect with 16-bit offset 4 6
to register

OR [Rd+offset16], Rs Logical OR register to register-indirect with 4 6
16-bit offset

OR Rd, [Rs+] Logical OR register-indirect with auto 2 5
increment to register

OR [Rd+], Rs Logical OR register-indirect with auto 2 5
increment to register

OR direct, Rs Logical OR register to memory 3 4

OR Rd, direct Logical OR memory to register 3 4

OR Rd, #data8 Logical OR 8-bit immediate data to register 3 3

OR Rd, #data16 Logical OR 16-bit immediate data to register 4 3

OR [Rd], #data8 Logical OR 8-bit immediate data to register- 3 4
indirect

OR [Rd], #data16 Logical OR 16-bit immediate data to register- 4 4
indirect

OR [Rd+], #data8 Logical OR 8-bit immediate data to register- 3 5
indirect with auto-increment

OR [Rd+], #data16 Logical OR 16-bit immediate data to register- 4 5
indirect with auto-increment

OR [Rd+offset8], #data8 Logical OR 8-bit immediate data to register- 4 6
indirect with 8-bit offset

OR [Rd+offset8], #data16 Logical OR 16-bit immediate data to register- 5 6
indirect with 8-bit offset

OR [Rd+offset16], #data8 Logical OR 8-bit immediate data to register- 5 6
indirect with 16-bit offset

Table 6.5

Mnemonic Description Bytes | Clocks

OR [Rd+offset16], #data16 | Logical OR 16-bit immediate data to register- 6 6
indirect with 16-bit offset

OR direct, #data8 Logical OR 8-bit immediate data to memory 4 4

OR direct, #data16 Logical OR16-bit immediate data to memory 5 4

RL Rd, #data4 Rotate left register by the 4-bit immediate 2 See
value Note 1

RLC Rd, #data4 Rotate left register though carry by the 4-bit 2 See
immediate value Note 1

RR Rd, #data4 Rotate right register by the 4-bit immediate 2 See
value Note 1

RRC Rd, #data4 Rotate right register though carry by the 4- 2 See
bit immediate value Note 1

XOR Rd, Rs Logical XOR registers 2 3

XOR Rd, [Rs] Logical XOR register-indirect to register 2 4

XOR [Rd], Rs Logical XOR register to register-indirect 2 4

XOR Rd, [Rs+offset8] Logical XOR register-indirect with 8-bit 3 6
offset to register

XOR [Rd+offset8], Rs Logical XOR register to register-indirect with 3 6
8-bit offset

XOR Rd, [Rs+offset16] Logical-XOR register-indirect with 16-bit 4 6
offset to register

XOR [Rd+offset16], Rs Logical XOR register to register-indirect with 4 6
16-bit offset

XOR Rd, [Rs+] Logical XOR register-indirect with auto 2 5
increment to register

XOR [Rd+], Rs Logical XOR register-indirect with auto 2 5
increment to register

XOR direct, Rs Logical XOR register to memory 3 4

XOR Rd, direct Logical XOR memory to register 3 4

XOR Rd, #data8 Logical XOR 8-bit immediate data to register 3 3

XOR Rd, #data16 Logical XOR 16-bit immediate data to 4 3
register

XOR [Rd], #data8 Logical XOR 8-bit immediate data to register- 3 4
indirect

XOR [Rd], #data16 Logical XOR 16-bit immediate data to 4 4

register-indirect

2/23/96 127 Addressing Modes and Data Types

Table 6.5

Mnemonic Description Bytes | Clocks

XOR [Rd+], #data8 Logical XOR 8-bit immediate data to register- 3 5
indirect with auto-increment

XOR [Rd+], #data16 Logical XOR 16-bit immediate data to 4 5
register-indirect with auto-increment

XOR [Rd+offset8], #data8 Logical XOR 8-bit immediate data to register- 4 6
indirect with 8-bit offset

XOR [Rd+offset8], #data16 Logical XOR 16-bit immediate data to 5 6
register-indirect with 8-bit offset

XOR [Rd+offset16], #data8 Logical XOR 8-bit immediate data to register- 5 6
indirect with 16-bit offset

XOR [Rd+offset16], #data16 | Logical XOR 16-bit immediate data to 6 6
register-indirect with 16-bit offset

XOR direct, #data8 Logical XOR 8-bit immediate data to memory 4 4

XOR direct, #data16 Logical XOR16-bit immediate data to 5 4
memory

Data transfer

MOV Rd, Rs Move register to register 2 3

MOV Rd, [Rs] Move register-indirect to register 2 3

MOV [Rd], Rs Move register to register-indirect 2 3

MOV Rd, [Rs+offset8] Move register-indirect with 8-bit offset to 3 5
register

MOV [Rd+offset8], Rs Move register to register-indirect with 8-bit 3 5
offset

MOV Rd, [Rs+offset16] Move register-indirect with 16-bit offset to 4 5
register

MOV [Rd+offset16], Rs Move register to register-indirect with 16-bit 4 5
offset

MOV Rd, [Rs+] Move register-indirect with auto increment to 2 4
register

MOV [Rd+], Rs Move register-indirect with auto increment to 2 4
register

MOV direct, Rs Move register to memory 3 4

MOV Rd, direct Move memory to register 3 4

MOV [Rd+], [Rs+] Move register-indirect to register-indirect, 2 6
both pointers auto-incremented

XA Tlcer Guide

178

2/M2NQA

Table 6.5

Mnemonic Description Bytes | Clocks

MOV direct, [Rs] Move register-indirect to memory 3 4

MOV [Rd], direct Move memory to register-indirect 3 4

MOV Rd, #data8 Move 8-bit immediate data to register 3 3

MOV Rd, #data16 Move 16-bit immediate data to register 4 3

MOV [Rd], #data8 Move 16-bit immediate data to register- 3 3
indirect

MOV [Rd], #data16 Move 16-bit immediate data to register- 4 3
indirect

MOV [Rd+], #data8 Move 8-bit immediate data to register- 3 4
indirect with auto-increment

MOV [Rd+], #data16 Move 16-bit immediate data to register- 4 4
indirect with auto-increment

MOV [Rd+offset8], #data8 Move 8-bit immediate data to register- 4 5
indirect with 8-bit offset

MOV [Rd+offset8], #data16 Move 16-bit immediate data to register- 5 5
indirect with 8-bit offset

MOV [Rd+offset16], #data8 Move 8-bit immediate data to register- 5 5
indirect with 16-bit offset

MOV [Rd+offset16], #data16 | Move 16-bit inmediate data to register- 6 5
indirect with 16-bit offset

MOV direct, #data8 Move 8-bit immediate data to memory 4 3

MoV direct, #data16 Move 16-bit immediate data to memory 5 3

MOV direct, direct Move memory to memory 4 4

MOV Rd, USP Move User Stack Pointer to register (system 2 3
mode only)

MOV USP, Rs Move register to User Stack Pointer (system 2 3
mode only)

MOVC Rd, [Rs+] - Move data from WS:Rs address of code 2 4
memory to register with auto-increment

MOVC A, [A+DPTR] Move data from code memory to the 2 6
accumulator indirect with DPTR

MOVC A, [A+PC] Move data from code memory to the 2 6
accumulator indirect with PC

MOVS Rd, #datad Move 4-bit sign-extended immediate data to 2 3
register

MOVS [Rd], #data4 Add 4-bit sign-extended immediate data to 2 4
register-indirect

2/23/96

129 Addressing Modes and Data Types

Table 6.5

Mnemonic Description Bytes | Clocks

MOVS [Rd+], #data4 Add 4-bit sign-extended immediate data to 2 4
register-indirect with auto-increment

MOVS [Rd+offset8], #datad Add register-indirect with 8-bit offset to 4-bit 3 5
sign-extended immediate data

MOVS [Rd+offset16], #datad Add register-indirect with 16-bit offset to 4- 4 5
bit sign-extended immediate data

MOVS direct, #data4 Add 4-bit sign-extended immediate data to 3 3
memory

MOVX Rd, [Rs] Move external data from memory to register 2 6

MOVX [Rd], Rs Move external data from register to memory 2 6

PUSH direct Push the memory content (byte/word) onto 3 5
the current stack

PUSHU direct Push the memory content (byte/word) onto 3 5
the user stack

PUSH Rlist Push multiple registers (byte/word) onto the 2 See
current stack Note 2

PUSHU Riist Push multiple registers (byte/word)from the 2 See
user stack Note 2

POP direct Pop the memory content (byte/word) from 3 5
the current stack

POPU direct Pop the memory content (byte/word) from 3 5
the user stack

POP Rlist Pop multiple registers (byte/word) from the 2 See
current stack Note 3

POPU Rlist Pop multiple registers (byte/word) from the 2 See
user stack Note 3

XCH Rd, Rs Exchange contents of two registers 2 5

XCH Rd, [Rs] Exchange contents of a register-indirect 2 6
address with a register

XCH Rd, direct Exchange contents of memory with a register 3 6

Program Branching

BCC rel8 Branch if the carry flag is clear 2 6t/3nt

BCS rel8 Branch if the carry flag is set 2 6t/3nt

BEQ rel8 Branch if the zero flag is set 2 6t/3nt

BNE rel8 Branch if the zero flag is not set 2 6t/3nt

XA User Guide 130 2/23/96

Table 6.5

Mnemonic Description Bytes | Clocks

BG rel8 Branch if greater than (unsigned) 2 6t/3nt

BGE rel8 Branch if greater than or equal to (signed) 2 6t/3nt

BGT rel8 Branch if greater than (signed) 2 6t/3nt

BL rel8 Branch if less than or equal to (unsigned) 2 6t/3nt

BLE rel8 Branch if less than or equal to (signed) 2 6t/3nt

BLT rei8 Branch if less than (signed) 2 6t/3nt

BMI rel8 Branch if the negative flag is éét 2 6t/3nt

BPL rel8 Branch if the negative flag is clear 2 6t/3nt

BNV rel8 Branch if overflow flag is clear 2 6t/3nt

BOV rel8 Branch if overflow flag is set 2 6t/3nt

BR rel8 Short unconditional branch 2 3

CALL [Rs] Subroutine call indirect with a register 2 8/5(P2)

CALL rel16 Relative call (+/- 64K) 3 7/4(PZ)

CJNE Rd,direct,rel8 Compare direct byte to register and jump if 4 10t/7nt
not equal

CJNE Rd,#data8,rel8 Compare immediate byte to register and 4 9t/ent
jump if not equal

CJNE Rd,#data16,rel8 Compare immediate word to register and 5 9t/ént

. jump if not equal

CJNE [Rd],#data8,rel8 Compare immediate word to register-indirect 4 10t/7nt
and jump if not equal

CJNE [Rd],#data16,rel8 Compare immediate word to register-indirect 5 10t/7nt
and jump if not equal

DJNZ Rd,rel8 Decrement register and jump if not zero 3 8t/5nt

DJNZ direct,rel8 Decrement memory and jump if not zero 4 9t/ént

FCALL addr24 Far call (anywhere in the 24-bit address 4 9/5(P2)
space)

FJMP addr24 Far jump (anywhere in the 24-bit address 4 6
space)

JB bit,rel8 Jump if bit set 4 7t/4nt

JBC bit,rel8 Jump if bit set and then clear the bit 4 7t/4nt

JMP rel16 Long unconditional branch 3 6

JMP [Rs] Jump indirect to the address in the register 2 7
(64K)

2/23/96

131 Addressing Modes and Data Types

Table 6.5

Mnemonic Description Bytes | Clocks
JMP [A+DPTR] Jump indirect relative to the DPTR 2 5
JMP [[Rs+]] Jump double-indirect to the address (pointer 2 8
to a pointer)
JNB bit,rel8 Jump if bit not set 4 7t/4nt
JNZ rel8 Jump if accumulator not equal zero 2 7t/4nt
Jz rel8 Jump if accumulator equals zero 2 7t/4nt
NOP No operation 1 3
RET Return from subroutine 2 8/6(PZ)
RETI Return from interrupt 2 10/
8(P2)
Bit Manipulation
ANL C, bit Logical AND bit to carry 3 4
ANL C, /bit Logical AND complement of a bit to carry 3 4
CLR bit Clear bit 3 4
MOV C, bit Move bit to the carry flag 3 4
MOV bit, C Move carry to bit 3 4
ORL C, bit Logical OR a bit to carry 3 4
ORL C, /bit Logical OR complement of a bit to carry 3 4
SETB bit Sets the bit specified 3 4
Exception / Trap
BKPT Cause the breakpoint trap to be executed. 1 23/
19(P2)
RESET Causes a hardware Reset, identical to an 2 8
external Reset
TRAP #data4 Causes 1 of 16 hardware traps to be 2 23/
executed 19(P2)

Note 1: For 8 and 16 bit shifts, it is 4+1 per additional two bits. For 32-bit shifts, it is 6+1 per additional two bits.

Note 2: 3 clocks + 3 clocks/register.
Note 3: 4 clocks +2 clocks/register.

XA User Guide

132

2/23/96

ADD Integer Addition

Syntax: ADD dest, source
Operation: dest <- src + dest

Description: Performs a twos complement binary addition of the source and destination operands,
and the result is placed in the destination operand. The source data is not affected by the operation.

Note: If used with write to PSWL, takes precedence to flag updates
Sizes: Byte-Byte, Word-Word

Flags Updated: C, AC, V,N,Z

ADD Rd,Rs
Bytes: 2
Cycles: 3
Operation: (Rd) <-- (Rd) + (Rs)
Encoding:
0j]0|0J|0 |SZ|O0O]|O]1 d|d|d|d|s|s|s]|s
ADD Rd, [Rs]
Bytes: 2
Cycles: 4
Operation: (Rd) <-- (Rd) + ((WS:Rs))
Encoding:
0] 0] 0]0|SZJ 01| 0 d|d|d|d|O0|s |s |s
ADD [Rd],Rs
Bytes: 2
Cycles: 4
Operation: (WS:Rd) <-- (WS:Rd) + (Rs)
Encoding:
o|o0fO0|O0|SZ|Oo|1]0O0 s|s|s|s|1]|d|d|d

2173/0A 127 AAddraccina Madac and Nata Tunac

ADD Rd, [Rs+offset8]

Bytes: 3
Cycles: 6
Operation: (Rd) <-- (Rd) + ((WS:Rs)+offset8)
Encoding:
00| 0] O0|SZ|1]|]0]|O d|{d|d|d|[O0O]|s |s |s

byte 3: offset8

ADD [Rd+offset8], Rs

Bytes: 3
Cycles: 6
Operation: ((WS:Rd)+offset8) <-- (WS:Rd)+offset8) + (Rs)
Encoding:
0| 0|0l O|SZ|1]0|O s|s|{s|s|1|d|d]|d

byte 3: offset8

ADD Rd, [Rs+offset16]

Bytes: 4
Cycles: 6
Operation: (Rd) <-- (Rd) + ((WS:Rs)+offsetl6)
Encoding:
0] 0| 0] 0|SZj1]0]1 d|d|[d|d|O0O]|s |s |s

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

ADD [Rd+offsetl16], Rs

Bytes: 4
Cycles: 6
Operation: ((WS:Rd)+offset16) <-- (WS:Rd)+offset16) + (Rs)
Encoding:
0| 0[O0l O0|SZ| 1|01 s|s|s|s|1]|d|d]|d

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

VA TTonw Maida 124 2 NNVQA

ADD Rd, [Rs+]

Bytes: 2
Cycles: 5
Operation: (Rd) <-- (Rd) + ((WS:Rs))
(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)
Encoding:

0O|lojo0|0|SZjO| 1] d|d|d|d |0 |s s |s

ADD [Rd+], Rs

Bytes: 2
Cycles: 5
Operation: ((WS:RAQ)) <-- (WS:Rd)) + (Rs)
(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)
Encoding:

0| 0} 0] 0|SZ|O]| 1]1 s|sf{s|s|1]|d|d]|d

ADD direct, Rs

Bytes: 3
Cycles: 4
Operation: (direct) <-- (direct) + (Rs)
Encoding:
0| 0|0fO0|SZ}1|1]0 s| s| s | s |1 [direct 3bits

byte 3: lower 8 bits of direct

ADD Rd, direct

Bytes: 3
Cycles: 4
Operation: (Rd) <-- (Rd) + (direct)
Encoding:
0| O0|lO0]O|SZ|1]1]0 djd|d|d |0 |direct: 3 bits

byte 3: lower 8 bits of direct

2173196 1285 Addraccina Madac and Nata Tunac

ADD Rd, #data8

Bytes: 3
Cycles: 3
Operation: (Rd) <-- (Rd) + #data8
Encoding:
1001 0j0[O0|1] |d|d|d|d| 0] 0| O0OfO

byte 3: #data8

ADD Rd, #datal6

Bytes: 4
Cycles: 3
Operation: (Rd) <-- (Rd) + #datal6
Encoding:
17001 1] 0] 0} 1 d|d|[d|d]|] 0] 0| O|O

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

ADD [Rd], #data8

Bytes: 3
Cycles: 4
Operation: ((WS:Rd)) <-- (WS:RAQ)) + #data8
Encoding:
1,100 1]0]0f1]O0 0|d|d|d]| 0] 0fO0]O0

byte 3: #data8

ADD [Rd], #datal6

Bytes: 4
Cycles: 4
Operation: ((WS:RAQ)) <-- (WS:Rd)) + #datal6
Encoding:
1100|110 1|0 0O|d|d|d| 0| 0| O0fO

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

VA Tlear (Caida 1A 2M2/0A

ADD [Rd+], #data8

Bytes: 3

Cycles: 5

Operation: ((WS:Rd)) <-- (WS:RA)) + #data8
Rd) <-- (Rd) + 1

Encoding:

1|0/ 0|1]0}jO0}j1] 1| |Ofd|d|d]|] O] 0] O0|O
byte 3: #data8

ADD [Rd+], #datal6

Bytes: 4

Cycles: 5

Operation: ((WS:RA)) <-- (WS:Rd)) + #datal6
(Rd) <--(Rd) +2

Encoding:

ilof0f{1|1}j0{1] 1| |(O|d|d|d| O] 0] 0|0

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

ADD [Rd+offset8], #data8

Bytes: 4
Cycles: 6
Operation: ((WS:Rd)+offset8) <-- (WS:Rd)+offset8) + #data8
Encoding:
110,01 0|1]0]|O0 0{d|d|{d|O0O}| 0] 0O} O

byte 3: offset8
byte 4: #data8

ADD [Rd+offset8], #datal6

Bytes: 5
Cycles: 6
Operation: ((WS:Rd)+offset8) <-- (WS:Rd)+offset8) + #datal6
Encoding:
1{0]0] 1] 1(1({0]O0 0| d{dfd| 0] 0] O] O

byte 3: offset8
byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

NIN2IOA 127 A AAdvacacina Madac and Nata Thimnac

ADD [Rd+offsetl16], #data8

Bytes: 5
Cycles: 6
Operation: ((WS:Rd)+offset16) <-- (WS:Rd)+offset16) + #data8
Encoding:
1100 1]0]1T]|0]1 Ol d|{ d| d| O] 0| 0| O

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

ADD [Rd+offsetl16], #datal6

Bytes: 6
Cycles: 6
Operation: ((WS:Rd)+offset16) <-- (WS:Rd)+offset16) + #datal6
Encoding:
1t])0f0] 111|101 0, d|{d|d|O0OjO0O]O0f|O

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #datal6
byte 6: lower 8 bits of #datal6

ADD direct, #data8

Bytes: 4
Cycles: 4
Operation: (direct) <-- (direct) + #data8
Encoding:
1 oyo0f1]0|1(1]|0O0 O |direct: 3bits| O| O] O| O

byte 3: lower 8 bits of direct
byte 4: #data8

ADD direct, #datal6

Bytes: 5
Cycles: 4
Operation: (direct) <-- (direct) + #datal6
Encoding:
1 oot} 1|1(|1]0 O [direct: 3bits| 0| 0| 0| O

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

VA TTane ML AA 1m0

ADDC Integer addition with Carry

Syntax: ADDC dest, source

Operation: dest <- dest + src + C

Description: Performs a two’s complement binary addition of the source operand and the
previously generated carry bit with the destination operand. The result is stored in the destination

operand.The source data is not affected by the operation.

If the carry from previous operation is one (C=1), the result is greater than the sum of the operands;
if it is zero (C=0), the result is the exact sum.

This form of addition is intended to support multiple-precision arithmetic. For this use, the carry
bit is first reset, then ADDC is used to add the portions of the multiple-precision values from least-
significant to most-significant.

Size: Byte-Byte, Word-Word
Flags Updated: C, AC, V,N, Z

ADDC Rd,Rs
Bytes: 2
Cycles: 3
Operation: (Rd) <-- (Rd) + (Rs) + (C)
Encoding:
0| 0| 0| 1|SZj 0|01 d|d|d|d]| s|s|s|s

ADDC Rd, [Rs]

Bytes: 2
Cycles: 4
Operation: (Rd) <-- (Rd) + (WS:Rs)) + (C)
Encoding:
o|o0lO0| 1|SZ|0| 1|0 d|{d|d|d]| Ol s|s|s

2/23/96 139 Addressing Modes and Data Types

ADDC [Rd], Rs

Bytes: 2
Cycles: 4
Operation: ((WS:Rd)) <-- (WS:Rd)) + (Rs) + (C)
Encoding:
0O|0| 0| 1|SZ|0]|1]0O s|s|s|s| 1| d| d| d

ADDC Rd, [Rs+offset8]

Bytes: 3
Cycles: 6
Operation: (Rd) <-- (Rd) + ((WS:Rs)+offset8) + (C)
Encoding:
oOfo0|O0} 1|SZ|]1]0]|O djd|d|d| 0| s|s]|s

byte 3: offset8

ADDC [Rd+offset8], Rs

Bytes: 3
Cycles: 6
Operation: ((WS:Rd)+offset8) <-- (WS:Rd)+offset8) + (Rs) + (C)
Encoding:
0| 0|]0]1|SZ|1|]0]O0 s|s|s|s| 1| d| d| d

byte 3: offset8

ADDC Rd, [Rs+offset16]

Bytes: 4
Cycles: 6
Operation: (Rd) <-- (Rd) + ((WS:Rs)+offset16) + (C)
Encoding:
0|0 |0 |1]|SZf1 |0 |1 d|d|{d|d|O0]|s | s|s

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

XA User Guide 140 2/23/96

ADDC [Rd+offsetl6], Rs

Bytes: 4
Cycles: 6
Operation: ((WS:Rd)+offset16) <-- (WS:Rd)+offset16) + (Rs) + (C)
Encoding:
0|0 |0 |1 |SzZ|1 |0 |1 s|s|s|s|1]|]d|d|d

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

ADDC Rd, [Rs+]

Bytes: 2
Cycles: 5
Operation: (Rd) <-- (Rd) + ((WS:Rs)) + (C)
(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)
Encoding:

o|jo0j0(1|Szf0o |1 |1 d{d|d|d|O0O|s s |s

ADDC [Rd+],Rs

Bytes: 2
Cycles: 5
Operation: ((WS:Rd)) <-- (WS:Rd)) + (Rs) + (C)
(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)
Encoding:

o0 | O} 1|SZ|0 [1 |1 s|s|{s|s|1|d|d]|d

ADDC direct, Rs

Bytes: 3
Cycles: 6
Operation: (direct) <-- (direct) + (Rs) + (C)
Encoding:
0|0 |0 |1 |SZ|1 |1]O0 s| s| s | s| 1 |direct: 3 bits

byte 3: lower 8 bits of direct

2/23/96 141 Addressing Modes and Data Types

ADDC Rd, direct

Bytes: 3

Cycles: 4

Operation: (Rd) <-- (Rd) + (direct) + (C)
Encoding:

0O|0|0]|1]|SZ|1 |1]O0 direct: 3 bits
byte 3: lower 8 bits of direct
ADDC Rd, #data8
Bytes: 3
Cycles: 3
Operation: (Rd) <-- (Rd) + #data8 + (C)
Encoding:
1]1]0(0|1|0O|0O| O] 1 0| Of 1
byte 3: #data8
ADDC Rd, #datal6
Bytes: 4
Cycles: 3
Operation: (Rd) <-- (Rd) + #datal6 + (C)
Encoding:
11010} 1} 1] 0} 0] 1 0] O 1
byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6
ADDC [Rd], #data8
Bytes: 3
Cycles : 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) + #data8 + (C)
Encoding:
11001 0(0]|1]0O 0] Of 1

byte 3: #data8

XA User Guide

142

2/23/96

ADDC [Rd], #datal6

Bytes: 4
Cycles: 4
Operation: ((WS:Rd)) <-- (WS:Rd)) + #datal6 + (C)
Encoding:
it{jofof{1f1fo|1}]0 0O(d|d|d|{O0|O0O] O]1

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

ADDC [Rd+], #data8

Bytes: 3

Cycles: 5

Operation: ((WS:Rd)) <-- ((WS:RQ)) + #data8 + (C)
(Rd) <-- (Rd) + 1

Encoding:

1lo0lo0|{1}lO|lO}1}1} |Ojd|djd|O0O|O0O}| O 1
byte 3: #data8

ADDC [Rd+], #datal6

Bytes: 4

Cycles: 5

Operation: ((WS:Rd)) <-- (WS:Rd)) + #datal6 + (C)
(Rd) <-- (Rd) +2

Encoding:

110 0(1T |10 1|1 Ojdj{d|{d|O0O|O0O| O] 1

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

ADDC [Rd+offset8], #data8

Bytes: 4
Cycles: 6
Operation: ((WS:Rd)+offset8) <-- (WS:Rd)+offset8) + #data8 + (C)
Encoding:
100 1]0|1]01]0O 0|l d{d|d| 0] 0Of O] 1

byte 3: offset8
byte 4: #data8

2/23/96 143 Addressing Modes and Data Types

ADDC [Rd+offset8], #datal6

Bytes: 5

Cycles: 6

Operation: ((WS:Rd)+offset8) <-- (WS:Rd)+offset8) + #datal6 + (C)
Encoding:

1100 1] 1]1]0]0 Ofd|d|fd| Ol 0| O] 1

byte 3: offset8
byte 4: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

ADDC [Rd+offsetl6], #data8

Bytes: 5

Cycles: 6

Operation: ((WS:Rd)+offset16) <-- (WS:Rd)+offset16) + #data8 + (C)
Encoding:

110[0] 1] 0[1]0]1 O d{d|d|O|O| O] 1

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

ADDC [Rd+offset16], #datal6

Bytes: 6

Cycles: 6

Operation: ((WS:Rd)+offset16) <-- (WS:Rd)+offset16) + #datal6 + (C)
Encoding:

110 0| 1| 11|01 0jd|d|d]| 0|0 |01

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #datal6
byte 6: lower 8 bits of #datal6

ADDC direct, #data8

Bytes: 4
Cycles: 4
Operation: (direct) <-- (direct) + #data8 + (C)
Encoding:
1 ofO0|j1j]0(1]1]0 O |direct: 3 bits| 0 |0 | O 1

byte 3: lower 8 bits of direct
byte 4: #data8

XA User Guide 144 2/23/96

ADDC direct, #datal6

Bytes: 5
Cycles: 4
Operation: (direct) <-- (direct) + #datal6 + (C)
Encoding:
1|10l 0f1(|1]1]1]0 0 |direct: 3bits| 0 | O | O | 1

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

2/23/96 145 Addressing Modes and Data Types

ADDS

Add Short

Syntax:

Operation:

ADDS dest, #value

dest <- dest + #datad

Description: Four bits of signed immediate data are added to the destination. The immediate data
is sign-extended to the proper size, then added to the variable specified by the destination operand,
which may be either a byte or a word. The immediate data range is +7 to -8. This instruction is used

primarily to increment or decrement pointers and counters.

Size: Byte-Byte, Word-Word

Flags Updated: N, Z

(Note: the C and AC flags must not be updated by ADDS since this instruction is used to replace

the 80C51 INC and DEC instructions, which do not update the flags.)

ADDS Rd, #datad

Bytes: 2
Cycles: 3
Operation: (Rd) <-- (Rd) + #datad
Encoding:

1 0|1 0|SZz|0o|0]| 1 #datad
ADDS [Rd], #data4
Bytes: 2
Cycles: 4
Operation:((WS:Rd)) <-- ((WS:Rd)) + #data4
Encoding:

1 0|11 0|8Z|j0|1]0 #datad
ADDS [Rd+], #data4
Bytes: 2
Cycles: 5
Operation: ((WS:Rd)) <-- (WS:Rd)) + #data4

(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)

Encoding:

1 o 1] 0(Sz|lo| 1{1 #data4
XA User Guide 146

2/23/96

ADDS [Rd+offset8], #datad

Bytes: 3
Cycles: 6
Operation: ((WS:Rd)+offset8) <-- (WS:Rd)+offset8) + #datad
Encoding:
1101, 0|SZ{1|0|O0 0| d{ d| d #data4

byte 3: offset8

ADDS [Rd+offset16], #datad

Bytes: 4
Cycles: 6
Operation:((WS:Rd)+offset16) <-- (WS:Rd)+offset16) + #datad
Encoding:
10| 1] 0|SZ|1|0]1 0 d| d| d #datad4

byte 3: upper 8 bits of offsetl6
byte 4: lower 8 bits of offset16

ADDS direct, #datad

Bytes: 3
Cycles: 4
Operation:(direct) <-- (direct) + #data4
Encoding:
1101 0|SZ[1]1]0 0 |direct: 3 bits #datad

byte 3: lower 8 bits of direct

2/23/96 147 Addressing Modes and Data Types

AND Logical AND

Syntax: AND dest, src

Operation: dest <- dest AND src

Description: Bitwise logical AND the contents of the source to the destination. The byte or word
specified by the source operand is logically ANDed to the variable specified by the destination
operand. The source data is not affected by the operation.

Size: Byte-Byte, Word-Word

Flags Updated: N, Z

AND Rd,Rs
Bytes: 2
Cycles: 3
Operation: (Rd) <-- (Rd) * (Rs)
Encoding:
0| 1] 0f1|SZ|]0]|0]1 d|{d|d|d|s|s|s]|s
AND Rd, [Rs]
Bytes: 2
Cycles: 4
Operation: (Rd) <-- (Rd) * ((WS:Rs))
Encoding:
0|10} 1{SZz|0|1]0 d|d|d|d]| O0O|s |s |s
AND [Rd], Rs
Bytes: 2
Cycles: 4
Operation: ((WS:Rd)) <-- (WS:Rd)) * (Rs)
Encoding:
O| 1, 0| 1|SZz|0]|1]O0 s|s|s|s|1|d|d]|d

XA User Guide 148 2/23/96

AND Rd, [Rs+offset8]

Bytes: 3
Cycles: 6
Operation: (Rd) <-- (Rd) * ((WS:Rs)+offset8)
Encoding:
o|1]0|1[(Sz|1]|]0]|O d|{d|d|d|[O0O]|s |s |s

byte 3: offset8

AND [Rd+offset8], Rs

Bytes: 3
Cycles: 6
Operation: ((WS:Rd)+offset8) <-- (WS:Rd)+offset8) » (Rs)
Encoding:
ol 1ol 1igzl 110l 0 silslslslt1lidlidld
byte 3: offset8
AND Rd, [Rs+offset16]
Bytes: 4
Cycles: 6
Operation: (Rd) <-- (Rd) * ((WS:Rs)+offset16)
Encoding:
oO| 1] 0| 1(SZ|1|[0] 1 d|{d|d|d|O0|[s |s |s

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

AND [Rd+offset16], Rs

Bytes: 4
Cycles: 6
Operation: ((WS:Rd)+offset16) <-- (WS:Rd)+offset16) * (Rs)
Encoding:
O| 1] 0| 1|SZ|1]0]| 1 s|s|s|s|1|d|d]|d

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offsetl6

2/23/96 149 Addressing Modes and Data Types

AND Rd, [Rs+]

Bytes: 2
Cycles: 5
Operation: (Rd) <-- (Rd) * (WS:Rs))

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)

Encoding:

0| 1| 0| 1|8z|o]|1]1 s |s|s
AND [Rd+], Rs
Bytes: 2
Cycles: 5
Operation: ((WS:Rd)) <-- (WS:Rd)) * (Rs)

(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)

Encoding:

o| 1] 0] 1|SZz|0| 1|1 d|d]|d
AND direct, Rs
Bytes: 3
Cycles: 4
Operation: (direct) <-- (direct) * (Rs)
Encoding:

o(110|1|SZ|1]1]0 direct: 3 bits
byte 3: lower 8 bits of direct
AND Rd, direct
Bytes: 3
Cycles: 4
Operation: (Rd) <-- (Rd) * (direct)
Encoding:

o110 1{SZ|1]1]0 direct: 3 bits

byte 3: lower 8 bits of direct

XA User Guide

180

NN INL

AND Rd, #data8

Bytes: 3
Cycles: 3
Operation: (Rd) <-- (RAd) * #data8
Encoding:
1 0| 0| 1] 0] 0] 0] 1 d d| 0] 1] 0] 1

byte 3: #data8

AND Rd, #datal6

Bytes: 4
Cycles: 3
Operation: (Rd) <-- (Rd) * #datal6
Encoding:
1 00| 1{1] 0] 0] 1 d d| 0| 1| 0} 1

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

AND [Rd], #data8

Bytes: 3

Cycles: 4

Operation: ((WS:RAQ)) <-- (WS:Rd)) * #data8
Encoding:

i(0|0f1]0[O0]1)0|] |O

byte 3: #data8

AND [Rd], #datal6

Bytes: 4

Cycles: 4

Operation: ((WS:RA)) <-- (WS:Rd)) * #datal6
Encoding:

1]0]0|1] 10|10 |O

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

2MUVQA 151

Addreccino Madec and Data Tvnes

AND [Rd+], #data8

Bytes: 3

Cycles: 5

Operation: ((WS:Rd)) <-- ((WS:Rd)) * #data8
(Rd) <-- (Rd) +1

Encoding:

1100100 11 0(d|d

byte 3: #data8

AND [Rd+], #datal6

Bytes: 4

Cycles: 5

Operation: ((WS:Rd)) <-- ((WS:Rd)) » #datal6
(Rd) <-- (Rd) +2

Encoding:

1100 11| 0] 1}1 0(d|d

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

AND [Rd+offset8], #data8

Bytes: 4

Cycles: 6

Operation: ((WS:Rd)+offset8) <-- (WS:Rd)+offset8) » #datal
Encoding:

i]0f0]1]0|1T]O]|O O d| d

byte 3: offset8
byte 4: #data8

AND [Rd+offset8], #datal6

Bytes: 5

Cycles: 6

Operation: ((WS:Rd)+offset8) <-- (WS:Rd)+offset8) » #datal6
Encoding:

1100 1]1]1]0]|O 0O(d| d

byte 3: offset8
byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

AND [Rd+offset16], #data8

Bytes: 5
Cycles: 6
Operation: ((WS:Rd)+offset16) <-- (WS:Rd)+offset16) » #data8

Encoding:

1|00 1]0|1T]0{1

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

AND [Rd+offset16], #datal6

Bytes: 6
Cycles: 6
Operation:

Encoding:

((WS:Rd)+offset16) < (WS:Rd)+offset16) « #datal6

11010 1] 1({1]0]1

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #datal6
byte 6: lower 8 bits of #datal6

AND direct, #data8

Bytes: 4
Cycles: 4
Operation: (direct) <-- (direct) #data8

Encoding:

1100101 |1]O0

direct: 3 bits| 0 | 1 | O | 1

byte 3: lower 8 bits of direct
byte 4: #data8

AND direct, #datal6

Bytes: 5
Cycles: 4
Operation: (direct) <-- (direct) * #datal6

Encoding:

11olol1]1]1|1]o0

direct: 3 bits| 0 |1 |0 | 1

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

2/23/196 153

Addressine Modes and Data Tvnes

ANL Logical AND a bit to the Carry flag

Syntax: ANL C,bit

Operation: C <- C (AND) Bit

Description: Read the specified bit and logically AND it to the Carry flag.
Size: Bit

Flags Updated: none

Note: Here the Carry bit is implicitly written by the instruction, and not to be confused with
carry affected by the result of an ALU operation

Bytes: 3
Cycles: 4
Encoding:
0|0]j]0|]0| 10|00 0(1]0|0|0 |0 | bit:2

byte 3: lower 8 bits of bit address

XA ¥Taa M2 124 AINA N

ANL Logical AND the complement of a bit to the Carry flag

Syntax: ANL C, /bit

Operation: Carry <- C (AND) bit

Description: Read the specified bit, complement it, and logically AND it to the Carry flag.
Size: Bit

Flags Updated: none

Note: Here the Carry bit is implicitly written by the instruction, and not to be confused with
carry affected by the result of an ALU operation

Bytes: 3
Cycles: 4
Encoding:
00 0|]0|]1|0]|0]O 0| 1] 0 1] O| O| bit:2

byte 3: lower 8 bits of bit address

2/23/96 158 Addreccino Madec and Data Tunec

ASL Arithmetic Shift Left

Syntax: ASL dest, count

Operation:

Do While (count not equal to 0)
(C) <- (dest.msb)

(dest.bit n+1) <- (dest.bit n)
count = count-1

if sign change during shift,
V)<-1

End While

Description:

If the count operand is greater than O, the destination operand is logically shifted left by the
number of bits specified by the count operand. The Low-order bits shifted in are zero-filled and
the high-order bits are shifted out through the C (carry) bit. If the count operand is 0, no shift is
performed.

The count operand could be:
- An immediate value (#data4 or #data5)
- A Register (Only 5-bits are used to implement up to 32 bit shifts)

The count is a positive value which may be from 1 to 31 and the destination operand is a signed
integer (twos complement form).The destination operand (data size) may be 8, 16, or 32 bits. In
the case of 32-bit shifts, the destination operand must be the least significant half of a double
word register.The count operand is not affected by the operation.

Note:

- a double word register is double-word aligned in the register file (R1:R0, R3:R2, R5:R4, or
R7:R6).

- If shift count (count in Rs) exceeds data size, the shifting is truncated to 5 bits i.e 32 else for
immediate shift count, shifting is continued until count is 0.

Size: Byte, word, and double word

Flags Updated: C, V,N, Z

Note: The V flag is set if the sign changes at any time during the shift operation and remains set
until the end of the shift operation i.e., the V flag does not get cleared even if the sign reverts to its

original state because of continued shifts within the same instruction. ASL clears the V flag if the
condition to set it does not occur.

WA TTrmw Ml AA ice AINA N

ASL Rd,Rs
Operation:
(Rd)
C }«— MSBet— | SB<—0

Bytes: 2

Cycles: For 8/16 bit shifts -> 4 + 1 for each 2 bits of shift
For 32 bit shifts -> 6 + 1 for each 2 bits of shift

Encoding:

1] 110 | 0({SZ1(Sz0| 0| 1| |d|[d|d|d| s| s|s|s

ASL Rd, #data4

Rd,#data5
Bytes: 2
Cycles: For 8/16 bit shifts -> 4 + 1 for each 2 bits of shift

For 32 bit shifts -> 6 + 1 for each 2 bits of shift
Operation:

(Rd)
C |« MSBe+——LSB=—0

Encoding: (for byte and word data sizes)

11110 1|[SZ1{SZ0(0 | 1 d|d|d]|d #data4

(for double word data size)

1 110 11 1]0] 1 d|d]|d #data5

Note: SZ1/SZ0 =00 : byte operation; SZ1/SZ0 = 10 : word operation; SZ1/SZ0 = 11 : double word
operation.

2/23/96 157 Addressing Modes and Data Types

ASR Arithmetic Shift Right

Syntax: ASR dest, count

Operation:

Do While (count not equal to 0)
(C) <- (dest.0)

(dest.bit n) <- (dest.bit n+1)
dest.msb <- Sign bit

count = count-1

End While

Description:

If the count operand is greater than 0, the destination operand is logically shifted right by the

- number of bits specified by the count operand. The low-order bits are shifted out through the C
(carry) bit. If the count operand is 0, no shift is performed. To preserve the sign of the original
operand, the MSBs of the result are sign-extended with the sign bit.

The count operand could be:
- An immediate value (#data4/5)
- A Register (Only 5-bits are used to implement up to 32 bit shifts)

The count operand could be an immediate value or a register. The count is a positive value
which may be from O to 31 and the destination operand is a signed integer. The count operand is
not affected by the operation. The data size may be 8, 16, or 32 bits. In the case of 32-bit shifts,
the destination operand must be the least significant half of a double word register.

Note:

- a double word register is double-word aligned in the register file (R1:R0, R3:R2, R5:R4, or
R7:R6).

- If shift count (count in Rs) exceeds data size, the shifting is truncated to 5 bits, i.e., 32 else for
immediate shift count, shifting is continued until count is 0.

- a double word register is double-word aligned in the register file (R1:R0, R3:R2, R5:R4, or
R7:R6).

Size: Byte, Word, Double Word

Flags Updated: C, N, Z

XA User Guide 158 2/23/96

ASR Rd, Rs

Bytes: 2
Cycles: For 8/16 bit shifts -> 4 + 1 for each 2 bits of shift
For 32 bit shifts -> 6 + 1 for each 2 bits of shift
Operation:
(Rd)

[-b—-l\ﬁSB———b LSB C

Encoding:

1| 10| 0/Sz1|SZ0|1 | O |d|d|d|d | s|s|s|s

ASR Rd, #data4
Rd,#data5

Operation:
(Rd)

l—:-_l\iljSB—»LSB—-b C

Bytes: 2
Cycles: For 8/16 bit shifts -> 4 + 1 for each 2 bits of shift
For 32 bit shifts -> 6 + 1 for each 2 bits of shift
Encoding: (for byte and word data sizes)
1 1] 0| 1|SZ1|SZ0| 1 0of |d|[d]|d|d #data4

(for double word data size)

1 110 1(SZ1|SZ0(1 | O| (d |(d |d #datab

Note: SZ1/SZ0 = 00: byte operation; SZ1/SZ0 = 10: word operation; SZ1/SZ0 = 11: double word
operation.

2/23/96 159 Addressing Modes and Data Types

BCC Branch if carry clear

Syntax: BCC rel8

Operation:
(PC) <-- (PC) +2
if (C) =0 then
(PC) <-- (PC + rel8*2)
(PC.0) <0

Description: The branch is taken if the last arithmetic instruction (or other instruction that updates
the C flag) did not generate a carry (the carry flag contains a 0). If Carry is clear, the program
execution branches at the location of the PC, plus the specified displacement, rel8. The branch
range is +254 bytes to -256 bytes, with the limitation that the target address is word aligned in code

memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated: none

Bytes: 2
Cycles: 6 (t)/3 (nt)
Encoding:

1(1(1]1]0]0

rel8

XA User Guide

160

2/23/96

BCS Branch if carry set

Syntax: BCS rel8

Operation:
(PC) <-- (PC) +2
if (C) = 1 then
(PC) <-- (PC + rel8*2)
(PC.0)<--0

Description: The branch is taken if the last arithmetic instruction (or other instruction that updates
the C flag) generated a carry (the carry flag contains a 1). The branch range is +254 bytes to -256
bytes, with the limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated: none

Bytes: 2
Cycles: 6t/3nt
Encoding:
1T (1 (1]1 0| 0| 0] 1 rel8

2/23/96 1A1 Addraccina Madac and Nata Tunac

BEQ Branch if zero

Syntax: BEQ rel8

Operation:
(PC) <-- (PC) +2
if (Z) = 1 then
(PC) <-- (PC + rel8*2)
(PC.0)<--0

Description: The branch is taken if the last arithmetic/logic instruction (or other instruction that
updates the Z flag) had a result of zero (the Z flag contains a 1). The branch range is +254 bytes to

-256 bytes, with the limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated: none

Bytes: 2
Cycles: 6t/3nt
Encoding:

1111111 0]0

rel8

Y A Tlear Cinida

1A?

2M2/QA

BG Branch if greater than (unsigned)

Syntax: BG rel8
Operation: (PC) <-- (PC) +2

if (Z) OR (C) =0 then

(PC) <-- (PC + rel8*2)

(PC.0)<-0
Description: The branch is taken if the last compare instruction had a destination value that was
greater than the source value, in an unsigned operation. The branch range is +254 bytes to -256
bytes, with the limitation that the target address is word aligned in code memory.
Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated: none

Bytes: 2
Cycles: 6t/3nt
Encoding:
111111 11010} 0 rel8

2/73/96 142 Ad1.__ . wx_ 1 1T~ . m

BGE Branch if greater than or equal to (signed)

Syntax: BGE rel8

Operation: (PC) <--(PC) +2
if (N) XOR (V) =0 then
(PC) <-- (PC + rel8*2)
(PC.0)<--0

Description: The branch is taken if the last compare instruction had a destination value that was
greater than or equal to the source value, in a signed operation. The branch range is +254 bytes to

-256 bytes, with the limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range
Size: Bit

Flags Updated: none

Bytes: 2
Cycles: 6t/3nt
Encoding:

1|1 |1{1{1]0| 1] 0

rel8

N IN2VN0OA

BGT Branch if greater than (signed)

Syntax: BGT rel8
Operation: (PC) <-- (PC) + 2
if ((Z) OR (N)) XOR (V) =0 then
(PC) <-- (PC + rel8*2)
(PC.0)<--0
Description: The branch is taken if the last compare instruction had a destination value that was
greater than the source value, in a signed operation. The branch range is +254 bytes to -256 bytes,
with the limitation that the target address is word aligned in code memory.
Note: Refer to section 6.3 for details of branch range
Size: Bit

Flags Updated: none

Bytes: 2
Cycles: 6t/3nt
Encoding:
111111 111 0] 0 rel8

22VQA 148 AAddannriac M dan nad Thnbn Taim s

BKPT Breakpoint

Syntax: BKPT

Operation: (PC)<--(PC)+1
(SSP) <-- (SSP) - 6
((SSP)) <-- (PC)
((SSP)) <-- (PSW)
(PSW) <-- code memory (bkpt vector)
(PC.15-0) <-- code memory (bkpt vector)
(PC.23-16) <-- 0; (PC.0) <-- 0

Description: Causes a breakpoint trap. The breakpoint trap acts like an immediate interrupt, using
a vector to call a specific piece of code that will be executed in system mode. This instruction is
intended for use in emulator systems to provide a simple method of implementing hardware
breakpoints.

For a breakpoint to work properly under all conditions, it must have an instruction length no greater
than the smallest other instruction on the processor, in this case the one byte NOP. This
requirement exists because a breakpoint may be inserted in place of a NOP that is followed by
another instruction that is branched to or otherwise executed without going through the breakpoint.
If the breakpoint instruction were longer than the NOP, it would corrupt the next instruction in
sequence if that instruction were executed.

The opcode for the breakpoint instruction is specifically assigned to be all ones (FFh). This is so
that un-programmed EPROM code memory will contain breakpoints. Similarly, the NOP
instruction is assigned to opcode 00 so that both "blank" code states map to innocuous instructions.

Size: None

Flags Updated: none’

Bytes: 1
Cycles: 23/19 (PZ)
Encoding:

L T e s O I B A

5. All flags are affected during the PSW load from the vector table. It is possible that these flags are restored
by the debugger, but does not have to be the case.

1 N IN21I0&

BL Branch if less than or equal to (unsigned)

Syntax: BL rel8
Operation: (PC) <-- (PC) + 2

if (Z) OR (C) = 1 then

(PC) <-- (PC + rel8*2)

(PC.0)<--0
Description: The branch is taken if the last compare instruction had a destination value that was
less than or equal to the source value, in an unsigned operation. The branch range is +254 bytes to
-256 bytes, with the limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated: none

Bytes: 2
Cycles: 6t/3nt
Encoding:
1 (1 (11 11 0 O] 1 rel8

2/72NQA 1R7 AAAdvaccine Madas and MNata Termnan

BLE Branch if less than or equal (signed)

Syntax: BLE rel8

Operation: (PC) <-- (PC) +2
if (Z) OR (N)) XOR (V) =1 then
(PC) <-- (PC + rel8*2)
(PC.0)<--0

Description: The branch is taken if the last compare instruction had a destination value that was
less than or equal to the source value, in a signed operation. The branch range is +254 bytes to -

256 bytes, with the limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range
Size: Bit

Flags Updated: none

Bytes: 2
Cycles: 6t/3nt
Encoding:

1)1 |1(1 117101

rel8

/N2/I0A

BLT Branch if less than (signed)

Syntax: BLT rel8
Operation: (PC) <-- (PC) +2
if (N) XOR (V) =1 then
(PC) <-- (PC + rel8*2)
(PC.0)<--0
Description: The branch is taken if the last compare instruction had a destination value that was
less than the source value, in a signed operation. The branch range is +254 bytes to -256 bytes, with
the limitation that the target address is word aligned in code memory.
Note: Refer to section 6.3 for details of branch range
Size: Bit

Flags Updated: none

Bytes: 2
Cycles: 6t/3nt
Encoding:
111111 11 0] 1] 1 rel8

2/23/96 169 Addressing Modes and Data Types

BMI Branch if negative

Syntax: BMI rel8

Operation: (PC) <-- (PC) +2
if (N) = 1 then
(PC) <-- (PC + rel8*2)
(PC.0)<-0

Description: The branch is taken if the last arithmetic/logic instruction (or other instruction that
updates the N flag) had a result that is less than O (the N flag contains a 1). The branch range is

+254 bytes to -256 bytes, with the limitation that the target address is word aligned in code

memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated: none

Bytes: 2
Cycles: 6t/3nt
Encoding:

111 4(1]1 0| 1

rel8

XA User Guide

170

2/23/96

BNE Branch if not equal

Syntax: BNE rel8
Operation: (PC) <-- (PC) + 2
if (Z) = 0 then

(PC) <-- (PC + rel8*2)
(PC.0)<--0

Description: The branch is taken if the last arithmetic/logic instruction (or other instruction that
updates the Z flag) had a non-zero result (the Z flag contains a 0). The branch range is +254 bytes
to -256 bytes, with the limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated: none

Bytes: 2
Cycles: 6t/3nt
Encoding:
1{1|1]1]o0|lo]1]o0] relg

2/23/96 171 Addressing Modes and Data Types

BNV

Branch if no overflow

Syntax:

Operation:

BNV rel8

PC)<--(PC) +2

if (V) =0 then

(PC) <-- (PC + rel8*2)
(PC.0)<-0

Description: The branch is taken if the last arithmetic/logic instruction (or other instruction that
updates the V flag) did not generate an overflow (The V flag contains a 0). The branch range is

+254 bytes to -256 bytes, with the limitation that the target address is word aligned in code

memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated: none

Bytes:
Cycles:

Encoding:

2
6t/3nt

1

rel8

XA User Guide

172

2/23/96

BOV Branch if overflow flag

Syntax: BOV rel8
Operation: (PC) <-- (PC) +2

if (V) =1 then

(PC) <-- (PC + rel8*2)

(PC.0)<--0
Description: The branch is taken if the last arithmetic/logic instruction (or other instruction that
updates the V flag) generated an overflow (the V flag contains a 1). The branch range is +254 bytes
to -256 bytes, with the limitation that the target address is word aligned in code memory.
Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated: none

Bytes: 2
Cycles: 6t/3nt
Encoding:
11111 0| 1] 0f1 rel8

2/23/96 173 Addressing Modes and Data Types

BPL Branch if positive

Syntax: BPL rel8

Operation: (PC) <-- (PC) +2
if (N) =0 then
(PC) <-- (PC + rel8*2)
(PC.0)<-0

Description: The branch is taken if the last arithmetic/logic instruction (or other instruction that
updates the N flag) had a result that is greater than O (the N flag contains a 0). The branch range is

+254 bytes to -256 bytes, with the limitation that the target address is word aligned in code

memory.

Note: Refer to section 6.3 for details of branch range

Size: Bit

Flags Updated: none

Bytes: 2
Cycles: 6t/3nt
Encoding:

1111|101

rel8

XA User Guide

174

2/23/96

BR Unconditional Branch

Syntax: BR rel8
Operation: (PC) <-- (PC) +2

(PC) <— (PC + rel8*2)
(PC.0) <0

Description: Branches unconditionally in the range of +254 bytes to -256 bytes, with the limitation
that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of branch range

Size: None

Flags Updated: none

Bytes: 2
Cycles: 6
Encoding:
1117111 111 1] 0 rel8

2/23/96 175 Addressing Modes and Data Types

CALL Call Subroutine Relative

Syntax: CALL rell6
Operation: (PC)<-- (PC) +3
(SP) <-- (SP) -4
((SP)) <-- (PC.23-0)
(PC) <-- (PC + rell6*2)
(PC.O)<--0
Description: Branches unconditionally in the range of +65,534 bytes to -65,536 bytes, with the
limitation that the target address is word aligned in code memory. The 24-bit return address is
saved on the stack.
Note: if the XA is in page 0 mode, only a 16-bit address will be pushed to the stack.
Note: Refer ‘o section 6.3 for details of branch range

Size: None

Flags Updated: none

Bytes: 3
Cycles: 7/14(PZ)
Encoding:

1110 0[O0 1] 0|1

byte 2: upper 8 bits of rel16
byte 3: lower 8 bits of rel16

XA User Guide 176 2/23/96

CALL Call Subroutine Indirect

Syntax: CALL [Rs]

Operation: (PC) <-- (PC) +2
(SP) <-- (SP) - 4
((SP)) <-- (PC.23-0)
(PC.15-1) <-- (Rs.15-1)
(PC.0)<--0

Description: Causes an unconditional branch to the address contained in the operand register,
anywhere within the 64K page following the CALL instruction.The return address (the address
following the CALL instruction) of the calling routine is saved on the stack. The target address
must be word aligned, as CALL or branch will force PC.bitO to 0.

Note:
(1) Since the PC always points to the instruction following the CALL instruction and if that
happens to be on a different page, then the called routine should be located in that page (64K)

(2) if the XA is in page 0 mode, only a 16-bit address will be pushed to the stack.
Size: None

Flags Updated: none

Bytes: 2
Cycles: 8/5(PZ)
Encoding:
1{1] 00| 0| 1} 1]O0 0l 0 0| 0] O s| s]| s

2/23/96 177 Addressine Modes and Data Tvpes

CIJNE

Compare and jump if not equal

Syntax:

Operation:

Description: The byte or word specified by the source operand is compared to the variable

CINE dest, src, rel8

(PC) <-- (PC) + # of instruction bytes

(dest) - (direct)
if (Z) = 0 then

(PC) <-- (PC + rel8*2); (PC.0) <--0

(result not stored)

specified by the destination operand and the status flags are updated. Jump to the specified address
if the values are not equal. The source and destination data are not affected by the operation. The
branch range is +254 bytes to -256 bytes, with the limitation that the target address is word aligned

in code memory.

Note: Refer to section 6.3 for details of jump range

Size: Byte-Byte, Word-Word

Flags Updated: C,N, Z

(Note: this particular type of compare must not update the V or AC flags to duplicate the 80C51

function.)
CINE Rd, direct, rel8
Bytes: 4
Cycles: 10t/7nt
Encoding:
1 11 1] 0|SZ direct: 3 bits

byte 3: lower 8 bits of direct

byte 4: rel8

XA Tlser Gunide

17R

2/N21QA

CINE Rd, #data8, rel8

Bytes: 4
Cycles: 9t/6nt
Encoding:
i{1|1|0l0]0|1{1] |d|d|d|d]| 0] 00| O
byte 3: rel8

byte 4: data#8

CINE Rd, #datal®6, rel8

Bytes: 5
Cycles: 9t/6nt
Encoding:
i1{1(1{0f{1}0|1]1]|] |djd|jdfd| 0] 0]O0] O
byte 3: rel8

byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

CINE [Rd], #data8, rel8

Bytes: 4
Cycles: 10t/7nt
Encoding:
1|11}, 0]0]0|1|1] |(O0|d|jfdjd| 1] 0]0]|O0
byte 3: rel8

byte 4: #data8

CINE [Rd], #datal6, rel8

Bytes: 5
Cycles: 10t/7nt
Encoding:
1|1{1}j0{1{0f1]1] |0jdfd|d|1{0[0]O
byte 3: rel8

byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

2/23/96 179 Addressing Modes and Data Types

CLR Clear Bit

Syntax: CLR bit

Operation: (bit) <--0

Description: Writes a 0 (clears) to the specified bit.
Size: Bit

Flags Updated: none

Bytes: 3
Cycles: 4
Encoding:
0| 0j0|O0O]1]0]|OfO 0] 0] 0| O] O] O bhit:2

byte 3: lower 8 bits of bit address

XA User Guide 180 2M3IQA

CMP Integer Compare

Syntax: CMP dest, src

Operation: dest - src

Description: The byte or word specified by the source operand is compared to the specified
destination operand by performing a twos complement binary subtraction of src from dest. The
flags are set according to the rules of subtraction. The source and destination data are not affected
by the operation.

Size: byte-byte, word-word

Flags Updated: C, AC, V,N, Z

CMP Rd,Rs

Operation: (Rd) - (Rs)

Bytes: 2
Cycles: 3
Encoding:
0|10 0|SZ| 0| 0] 1 d|d|d|d| s|s|s|s
CMP R4, [Rs]

Operation: (Rd) - ((WS:Rs))

Bytes 2
Cycles 4
Encoding:
0O|1]0f0{SZJ0|1]|O0 d|(d|d|d|O0O|s |s |s

2/23/96 181 Addressing Modes and Data Types

CMP [Rd], Rs

Operation: ((WS:R4d)) - (Rs)

Bytes: 2
Cycles: 4
Encoding:
o|1| 0| 0|Szjo|1|O0 s|s|s|s|1]d|d]|d

CMP Rd, [Rs+offset8]

Bytes: 3
Cycles: 6
Operation: (Rd) - (WS:Rs)+offset8)
Encoding:
o1 0] 0(SZ{1]0]|O0 d|{d|d|[d|O0O]|s |s |s

byte 3: offset8

CMP [Rd+offset8], Rs

Bytes: 3
Cycles: 6
Operation: ((WS:Rd)+offset8) - (Rs)
Encoding:
o(110/0|SZ}1{0]| O s|s|s|s|1|d|d]d

byte 3: offset8

CMP Rd, [Rs+offset16]

Bytes: 4
Cycles: 6
Operation: (Rd) - ((WS:Rs)+offset16)
Encoding:
oO(1/0|0|SZ|1|0]1 d|d|d|d|O0|s s |s

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

XA User Guide 182 2/23/96

CMP [Rd+offset16], Rs

Bytes: 4
Cycles: 6
Operation: ((WS:Rd)+offsetl6) - (Rs)
Encoding:
0|1}, 0] 0(SzZz;1]0]|1 s|s|s|s|1]|]d|d]|d

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

CMP Rd, [Rs+]

Bytes: 2
Cycles: 5
Operation: (Rd) - ((WS:Rs))
(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)
Encoding:

0Ol 1] 0| OfSzZ| 0| 1] 1 d|{d|d|d|O0O]|s|s |s

CMP [Rd+], Rs

Bytes: 2
Cycles: 5

Operation: ((WS:RQ)) - (Rs)
(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)

Encoding:

O| 1] 0| 0fSzZ|0O}| 1] 1 s|s|s|s|1]|d|d]|d

CMP direct, Rs

Bytes: 3
Cycles: 4
Operation: (direct) - (Rs)
Encoding:
oO| 1] 0]0|Sz|1]1]|0 s| s| s | s |1 |direct: 3bits

byte 3: lower 8 bits of direct

2/23/96 183 Addressing Modes and Data Types

CMP Rd, direct

Bytes: 3
Cycles: 4
Operation: (Rd) - (direct)
Encoding:
0| 1] 0| 0|SZ| 1 direct: 3 bits
byte 3: lower 8 bits of direct
CMP Rd, #data8
Bytes: 3
Cycles: 3
Operation: (Rd) - #data8
Encoding:
1 0/ 0] 1, 0]0 11010
byte 3: #data8
CMP Rd, #datal6
Bytes: 4
Cycles: 3
Operation: (Rd) - #datal6
Encoding:
1 0,011 1]0 11 0|0
byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6
CMP [Rd], #data8
Bytes: 3
Cycles: 4
Operation: ((WS:Rd)) - #data8
Encoding:
1 o0l 10O 11 0|0

byte 3: #data8

XA User Guide

184

2/23/96

CMP [Rd], #datal6

Bytes: 4
Cycles: 4
Operation: ((WS:Rd)) - #datal6
Encoding:
11001 1]0] 1] 0 0jd|{d|d| 0| 1] 0|0

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

CMP [Rd+], #data8

Bytes: 3

Cycles: 5

Operation: ((WS:Rd)) - #data8
Rd) <~ (Rd) + 1

Encoding:

110 0] 1] 0[O0 11 0O(df{d|d]| 0| 1] 0|0
byte 3: #data8

CMP [Rd+], #datal6

Bytes: 4

Cycles: 5

Operation: ((WS:RQ)) - #datal6
(Rd) <--(Rd) +2

Encoding:

1100 1|10 1] 1 0|d|d|d| 0| 1] 0|0

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

CMP [Rd+offset8], #data8

Bytes: 4
Cycles: 6
Operation: ((WS:Rd)+offset8) - #data8
Encoding:
110/, 0] 1]0(1T]0]|O0 0{d|d|d| 0| 1f O] O

byte 3: offset8
byte 4: #data8

2/23/96 185 Addressing Modes and Data Types

CMP [Rd+offset8], #datal6

Bytes: 5
Cycles: 6
Operation: ((WS:Rd)+offset8) - #datal6
Encoding:
1100 1]1]1]0]0 0| d|d|d| Ol 1] 0] O

byte 3: offset8
byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

CMP [Rd+offsetl16], #data8

Bytes: 5
Cycles: 6
Operation: ((WS:Rd)+offset16) - #data8
Encoding:
1100|101 (0]1 0| d|d|d|O| 1] 0| O

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

CMP [Rd+offsetl6], #datal6

Bytes: 6
Cycles: 6
Operation: ((WS:Rd)+offsetl6) - #datal6
Encoding:
1{0] 0} 1] 1[1]0(1 Of{d|d|d|oOf1][]0] O

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #datal6
byte 6: lower 8 bits of #datal6

CMP direct, #data8

Bytes: 4
Cycles: 4
Operation: (direct) - #data8
Encoding:
1 ojo0f1f{O0|1]|1]O O |direct: 3bits| 0 [1 |0 | O

byte 3: lower 8 bits of direct
byte 4: #data8

XA User Guide 186 2/23/96

CMP direct, #datal6

Bytes: 5
Cycles: 4
Operation: (direct) - #datal6
Encoding:
1 ojof1y 11110 O |direct:3bits| 0 | 1 |0 | O

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

2/23/96 187 Addressing Modes and Data Types

CPL Integer Ones Complement

Syntax: CPL Rd
Operation: Rd <-- (Rd)

Description: Performs a ones complement of the destination operand specified by the register Rd.
The result is stored back into Rd. The destination may be either a byte or a word.

Size: Byte, Word

Flags Updated: N, Z

Bytes: 2
Cycles: 3
Encoding:
11 0] 0| 1|SZ|]0|0|O d{d|dfd|] 1] 0f{1]0

XA User Guide 188 2/23/96

DA Decimal Adjust

Syntax: DA Rd

Operation: if (Rd.3-0)>9or (AC) =1
then (Rd.3-0) <-- (Rd.3-0) + 6
if (Rd.7-4)>9or (C)=1
then (Rd.7-4) <-- (Rd.7-4) + 6

Description: Adjusts the destination register to BCD format (binary-coded decimal) following an
ADD or ADDC operation on BCD values. This operation may only be done on a byte register.

If the lower 4 bits of the destination value are greater than 9, or if the AC flag is set, 6 is added to

the value. This may cause the carry flag to be set if this addition caused a carry out of the upper 4
bits of the value.

If the upper 4 bits of the destination value are greater than 9, or if the carry flag was set by the add
to the lower bits, 60 hex is added to the value. This may cause the carry flag to be set if this addition
caused a carry out of the upper 4 bits of the value. Carry will never be cleared by the DA instruction
if it was already set.

Size: Byte

Flags Updated: C, N, Z

The carry flag may be set but not cleared. See the description of the carry flag update above.

Bytes 2
Cycles 4
Encoding:
110,01, 0({0|0}|0O d|{d|d|d| 1] 0[0}|O0

Note: Please refer to the table on the next page.

2/23/96 189 Addressing Modes and Data Types

The following table shows the possible actions that may occur during the DA instruction, related
to the input conditions.

Table 6.6
Low nibble Carry to H.i gh Initial Number Resulting
(bits 3-0) || A€ high nibble C flag addedto | g9
nibble (bits 7-4) value
0-9 0 0 0-9 0 00 0
A-F 0 1 0-8 0 06 0
0-3* 1 0 0-9 0 06 0
0-9 0 0 A-F 0 60 1
A-F 0 1 9-F 0 66 1
0-3* 1 0 A-F 0 66 1
0-9 0 0 0-2* 1 60 1
A-F 0 1 0-2* 1 66 1
0-3* 1 0 0-3* 1 66 1

: The largest digit that could result from adding two BCD digits that caused the AC flag to
be set is 3. This is with an ADDC instruction where 9 + 9 + 1 (the carry flag) = 13 hex.

*ok : The largest digit that could result in the upper nibble of a value by adding two BCD bytes,
with no carry from the bottom nibble (the AC flag = 0) is 2. For instance, 98 hex + 97 hex = 12F
hex.

*#% :The largest digit that could result in the upper nibble of a value by adding two BCD bytes,
with a carry from the bottom nibble (the AC flag = 1) is 3. For instance, 99 hex + 99 hex = 132 hex.

XA User Guide 190 2/23/96

DIV.w 16x8 Signed Division
DIV.d 32x16 Signed Division
DIVU.b 8x8 Unsigned Division
DIVU.w 16x8 Unsigned Division
DIVU.d 32x16 Unsigned Division

Description: The byte or word specified by the source operand is divided into the variable
specified by the destination operand.

For DIVU.b, the destination operand can be any byte register that is the least significant byte of a
word register. For DIV.w and DIVU.w, the destination operand must be a word register, and for
DIV.d and DIVU.d, the destination operand must identify a word register that is the low-word of
a double-word register (see note below). The result is stored in the destination register as the
quotient (8 bits for DIVU.b, DIVU.w, DIV.w, and DIVU.w, and 16-bits for DIV.d and DIVU.d)
in the least significant half and the remainder (same size as the quotient), in the most significant
half (except for DIVU.b which stores the quotient in the destination as identified by the lower half
of a word register and the remainder at upper half of the same word register).

Note: a double word register is double-word aligned in the register file (R1:R0, R3:R2, R5:R4, or
R7:R6).

Size: Byte-Byte, Word-Byte, Double word-Word
Flags Updated: C, V,N, Z
The carry flag is always cleared. The V flag is set in the following cases, otherwise it is cleared:

- DIVU.b: V is set if a divide by 0 occurred. A divide by O also causes a hardware trap
to be generated.

- DIV.w, DIVU.w: V is set if the result of the divide is larger than 8 bits (the result does
not fit in the destination).

- DIV.d, DIVU.d: V is set if the result of the divide is larger than 16 bits (the result does
not fit in the destination).

The Z, and N flags are set based on the quotient (integer) portion of the result only and not on
the remainder.

Examples:

a) DIVU.b R4L, R4H - will store the result of the division of R4L by R4H in
R4L and R4H (quotient in register R4L, remainder in register R4H).

b) DIV.w RO, R2L - will store the result of word register RO divided by byte register
R2L in word register RO (quotient in register ROL, remainder in register ROH).

c) DIV.d R4,R2 - will store the result of double-word register R5:R4 divided by word
register R2 in double-word register R5:R4 (quotient in R4, remainder in R5)

2/23/96 191 Addressing Modes and Data Types

Note: For all divides except DIVU.D, the destination register size is the same as indicated by the
instruction (by the “.b”, “.w”, or “.d”) and the source register is half that size.

DIV.w Rd, Rs
(signed 16 bits / 8 bits --> 8 bit quotient, 8 bit remainder)

Bytes: 2
Cycles: 14
Operation: (RdL) <-- 8-bit integer portion of (Rd) / (Rs) (signed divide)
(RdH) <-- 8-bit remainder of (Rd) / (Rs)
Encoding:
1|1y 1,00 1] 1|1 d|d|d|d]| s|s|s|s

DIV.w Rd, #data8
(signed 16 bits / 8 bits --> 8 bit quotient, 8 bit remainder)

Bytes: 3
Cycles: 14
Operation: (RdL) <-- 8-bit integer portion of (Rd) / #data8 (signed divide)
(RdH) <-- 8-bit remainder of (Rd) / #data8
Encoding:
1] 11101101 0O d|d|d|[d]| 1] 0| 1|1

byte 3: #data8

DIV.d Rd,Rs
(signed 32 bits / 16 bits --> 16 bit quotient, 16 bit remainder)
Bytes: 2
Cycles: 24
Operation: (Rd) <-- 16-bit integer portion of (Rd) / (Rs) (signed divide)
(Rd+1)<-- 16-bit remainder of (Rd) / (Rs)
Encoding:
11110 1] 1] 1] 1 d|d|d|[O0| s|s|s|s

XA User Guide 192 2/23/96

DIV.d Rd, #datal6
(signed 32 bits / 16 bits --> 16 bit quotient, 16 bit remainder)

Bytes: 4
Cycles: 24
Operation: (Rd) <-- 16-bit integer portion of (Rd) / #datal6 (signed divide)
(Rd+1) <-- 16-bit remainder of (Rd) / #datal6
Encoding:
1|1} 1] 0] 1] 0[O0} 1 d|d|d|O0O]| 1] 0] Of 1

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

DIVUb Rd,Rs
(unsigned 8 bits / 8 bits --> 8 bit quotient, 8 bit remainder)

Bytes: 2
Cycles: 12
Operation: (RdL) <-- 8-bit integer portion of (Rd) / (Rs) (unsigned divide)
(RdH) <-- 8-bit remainder of (Rd) / (Rs)
Encoding:
1] 1] 1] 0] 0| 0] Of 1 d|d|[d|d| s|s|s|s

DIVU.b Rd, #data8
(unsigned 8 bits / 8 bits --> 8 bit quotient, 8 bit remainder)

Bytes: 3

Cycles: 12

Operation: (RdL) <-- 8-bit integer portion of (Rd) / #data8 (unsigned divide)
(RdH) <-- 8-bit remainder of (Rd) / #data8

Encoding:

111,101 0] 0|0 d|d|[d|d| O] O] O 1
byte 3: #data8

2/23/96 193 Addressing Modes and Data Types

DIVU.w Rd,Rs
(unsigned 16 bits / 8 bits --> 8 bit quotient, 8 bit remainder)

Bytes: 2
Cycles: 12
Operation: (RdL) <-- 8-bit integer portion of (Rd) / (Rs) (unsigned divide)
(RdH) <-- 8-bit remainder of (Rd) / (Rs)
Encoding:
1111 0] 0| 1] 0} 1 d|d|d|jd| s|s|s]|s

DIVU.w Rd, #data8
(unsigned 16 bits / 8 bits --> 8 bit quotient, 8 bit remainder)

Bytes: 3
Cycles: 12
Operation: (RdL) <-- 8-bit integer portion of (Rd) / #data8 (unsigned divide)
(RdH) <-- 8-bit remainder of (Rd) / #data8
Encoding:
1111} 0] 1010} 0 d|d|[d|d] 0| Of 1] 1

" byte 3: #data8

DIVUd Rd,Rs
(unsigned 32 bits / 16 bits --> 16 bit quotient, 16 bit remainder)

Bytes: 2
Cycles: 22
Operation: (Rd) <-- 16-bit integer portion of (Rd) / (Rs) (unsigned divide)
(Rd+1)<-- 16-bit remainder of (Rd) / (Rs) !
Encoding:
1{111,0, 111101 |dfd|d|O0]| s|s|s]|s

XA User Guide 194 2/23/96

DIVU.d Rd, #datal6
(unsigned 32 bits / 16 bits --> 16 bit quotient, 16 bit remainder)

Bytes: = 4
Cycles: 22
Operation: (Rd) <-- 16-bit integer portion of (Rd) / #datal6 (unsigned divide)
(Rd+1)<-- 16-bit remainder of (Rd) / #datal6
Encoding:
11 1] 1] 0 1] 0] Of 1 d|d|d|O0O]| O 0| O] 1

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

2/23/96 195 Addressing Modes and Data Types

DJNZ

Decrement and jump if not zero

Syntax:

Operation:

DINZ dest, rel8

PC)<--(PC)+3
(dest) <-- (dest) - 1

if (Z) = 0 then

(PC) <-- (PC + rel8*2); (PC.0) <-- 0

Description: Controls a loop of instructions. The parameters are: a condition code (Z), a counter
(register or memory), and a displacement value. The instruction first decrements the counter by
one, tests the condition if the result of decrement is O (for termination of the loop); if it is false,
execution continues with the next instruction. If true, execution branches to the location indicated
by the current value of the PC plus the sign extended displacement. The value in the PC is the

address of the instruction following DINZ.

The branch range is +254 bytes to -256 bytes, with the limitation that the target address is word

aligned in code memory.The destination operand could be byte or word.
Note: Refer to section 6.3 for details of jump range
Size: Byte, Word

Flags Updated: N, Z

DINZ Rd,rel8

Bytes: 3
Cycles: 8t/5nt
Encoding:
1 0| 0| 0(Sz 0|0} O
byte 3: rel8
DINZ direct, rel8
Bytes: 4
Cycles: . 9t/5nt
Encoding:
1 1] 1] 0[Sz direct: 3 bits
byte 3: lower 8 bits of direct
byte 4: rel8
XA User Guide 196

2/23/96

FCALL Far Call Subroutine Absolute

Syntax: FCALL addr24

Operation: (PC) <-- (PC) +4
(SP) <-- (SP) - 4
((SP)) <-- (PC)
(PC.23-0) <-- addr24
(PC.0)<--0

Description: Causes an unconditional branch to the absolute memory location specified by the
second operand, anywhere in the 16 megabytes XA address space. The 24-bit return address (the
address following the CALL instruction) of the calling routine is saved on the stack. The target
address must be word aligned as CALL or branch will force PC.bitO to 0.

Note: if the XA is in page 0 mode, only a 16-bit address will be pushed to the stack.

Size: None

Flags Updated: none

Bytes: 4
Cycles: 12/9(PZ)
Encoding:
1{1]0]J]0]|]O0O([1({0]0O address: middle 8 bits (bits 15-8)

byte 3: lower 8 bits of address (bits 7-0)
byte 4: upper 8 bits of address (bits 23-16)

2/23/96 197 Addressing Modes and Data Types

FJMP Far Jump Absolute

Syntax: FIMP addr24

Operation: (PC.23-0) <-- addr24
(PC.0)<--0

Description: Causes an unconditional branch to the absolute memory location specified by the
second operand, anywhere in the 16 megabytes XA address space.
Note: The target address must be word aligned as JMP always forces PC to an even address.

Note: if the XA is in page 0 mode, only 16-bits of the address will be used.

Size: None

Flags Updated: none

Bytes: 4
Cycles: 7
Encoding:

1{1]j]0}1{0}1{0

address: middle 8 bits (bits 15-8)

byte 3: lower 8 bits of address (bits 7-0)
byte 4: upper 8 bits of address (bits 23-16)

XA User Guide

198

2/23/96

JB

Relative Jump if bit set

Syntax:

Operation:

JB bit, rel8

(PC)<--(PC) +4

if (bit) = 1 then

(PC) <-- (PC + rel8*2);
(PC.0)<--0

Description: If the specified bit is a one, program execution jumps at the location of the PC, plus
the specified displacement. If the specified bit is clear, the instruction following JB is executed.The

branch range is +254 bytes to -256 bytes, with the limitation that the target address is word aligned
in code memory.

Note: Refer to section 6.3 for details of jump range

Size: Bit

Flags Updated: none

Bytes:
Cycles:

Encoding:

4
6t/3nt

1

o010} 1]1

0| O| O] bit: 2

byte 3: lower 8 bits of bit address

byte 4: rel8

2/23/96

199

Addressing Modes and Data Types

JBC Jump if bit is set then clear bit

Syntax: JBC bit, rel8

Operation: (PC)<-- (PC) +4
if (bit) = 1 then
(PC) <-- (PC + rel8*2);
(PC.0) <-- 0; (bit) <-- 0

Description: If the bit specified is set, branch to the address pointed to by the PC plus the specified
displacement. The specified bit is then cleared allowing implementation of semaphore operations.
If the specified bit is clear, the instruction following JBC is executed. The branch range is +254
bytes to -256 bytes, with the limitation that the target address is word aligned in code memory.
Note: Refer to section 6.3 for details of jump range

Size: Bit

Flags Updated: none

Bytes: 4
Cycles: 6t/3nt
Encoding:
1{0fO0f 101 |11 1{ 11 0] 0] O Of bit:2
byte 3: lower 8 bits of bit address
byte 4: rel8

XA User Guide 200 2/23/96

JMP Relative Jump

Syntax: JMP rell6
Operation: (PC) <-- (PC) +3
(PC) <-- (PC + rel16*2)
(PC.0)<--0

Description: Jumps unconditionally. The branch range is +65,535 bytes to -65,536 bytes, with the
limitation that the target address is word aligned in code memory.

Note: Refer to section 6.3 for details of jump range
Size: None

Flags Updated: none

Bytes: 3
Cycles: 6
Encoding:
11101 {0]|1]0]|1 rel16: upper 8 bits

byte 3: lower 8 bits of rel16

2/23/96 201 Addressing Modes and Data Types

JMP Jump Indirect through Register

Syntax: JMP [Rs]

Operation: (PC) <-- (PC) +2
(PC.15-1) <-- (Rs.15-1) (note that PC.23-16 is not affected)
(PC.0) <--0

Description: Causes an unconditional branch to the address contained in the operand word
register, anywhere within the 64K segment following the JMP instruction.The value of the PC used
in the target address calculation is the address of the instruction following the JMP instruction.
The target address must be word aligned as JMP will force PC.bit0 to 0.

Size: none
Flags Updated: none
Bytes: 2
Cycles: 7
Encoding:
1170110 1]1]0 0| 1| 1] 1] 0| s|s|s

XA User Guide 202 2/23/96

JMP Jump indirect through register

Syntax: JMP [A+DPTR]
Operation: (PC) <-- (PC) +2

(PC15-1) <-- (A) + (DPTR)

(PC.0)<--0
Description: Causes an unconditional branch to the address formed by the sum of the 80C51
compatibility registers A and DPTR, anywhere within the 64K segment following the JMP
instruction. This instruction is included for 80C51 compatibility. See Chapter 9 for details of
80C51 compatibility features.

Note: The target address must be word aligned as JMP will force PC.bitO0 to 0.

Flags Updated: none

Bytes: 2
Cycles: 5

Note: A and DPTR are pre-defined registers used for 80C51 code translation.

Encoding:

1|1{0f1{0f1f1]O0 of1{0J0]0] 11| O0

2/23/96 203 Addressing Modes and Data Types

JMP Jump double indirect

Syntax: JMP [[Rs+]]

Operation: (PC)<--(PC)+2
(PC.15-0) <-- code memory ((WS:Rs))
(PC.0)<--0
(Rs) <-- (Rs) +2

Description: Causes an unconditional branch to the address contained in memory at the address
pointed to by the register specified in the instruction. The specified register is post-incremented.

This 2-byte instruction may be used to compress code size by using it to index through a table of
procedure addresses that are accessed in sequence. Each procedure would end with another JMP
[[R+]] that would immediately go to the next procedure whose address is in the table.

The procedures should, however, must be located in the same 64K address page of the executed
“Jump Double-indirect” instruction (although the table could be in any page). This results in -
substantial code compression and hence cost reduction through smaller memory requirements. The
register pointer (index to the table) being automatically post-incremented after the execution of the
instruction. The 24-bit address is identified by combining the low order 16-bit of the PC and either
of high 8-bits of PC or the contents of a byte-size CS register as chosen by the program through a
segment select Special Function Register (SFR).

Note: The subroutine addresses must be word aligned as JMP will force PC.bit0 to 0.

Flags Updated: none

Bytes: 2
Cycles: 5
Encoding:
11110 |1{0|1{|1]0 Of1(1] 0| 0| s| s| s

XA User Guide ; . 204 2/23/96

JNB Jump if bit not set

Syntax: JNB bit, rel8

Operation: (PC)<-- (PC)+4
if (bit) = O then
(PC.15-0) <-- (PC + rel8*2); (PC.0) <-- 0

Description: If the specified bit is a zero, program execution jumps at the location of the PC, plus
the specified displacement. If the specified bit is set, the instruction following JB is executed.
The branch range is +254 bytes to -256 bytes, with the limitation that the target address is word
aligned in code memory.

Note: Refer to section 6.3 for details of jump range

Size: Bit
Flags Updated: none
Bytes: 4
Cycles: 6t/3nt
Encoding:
1107010111 110 1]0] 0| Of bit: 2
byte 3: lower 8 bits of bit address
byte 4: rel8

2/23/96 208 Addreccino Madac and Nata Tunac

JNZ Jump if the A register is not zero

Syntax: JNZ rel8

Operation: (PC) <-- (PC) +2
if (A) not equal to 0, then

(PC.15-0) <-- (PC + rel8*2); (PC.0) <-- 0

Description: A relative branch is taken if the contents of the 80C51 Accumulator are not zero. The
branch range is +254 bytes to -256 bytes, with the limitation that the target address is word aligned

in code memory.

The contents of the accumulator remain unaffected. This instruction is included for 80C51

compatibility. See Chapter 9 for details of 80C51 compatibility features.

Note: Refer to section 6.3 for details of jump range

Size: Bit

Flags Updated: none

Bytes: 2
Cycles: 6t/3nt
Encoding:

1110 1 1] 1

rel8

X A Tlcer Gnide

206

21M2/QA

JZ Jumbp if the A register is zero

Syntax: JZ rel8

Operation: (PC) <-- (PC) +2
If (A) = 0 then
(PC.15-0) <-- (PC + rel8%*2);
(PC.0)<--0

Description: A relative branch is taken if the contents of the 80C51 Accumulator are zero. The

branch range is +254 bytes to -256 bytes, with the limitation that the target address is word aligned
in code memory.

The contents of the accumulator remain unaffected. This instruction is included for 80C51
compatibility. See Chapter 9 for details of 80C51 compatibility features.

Note: Refer to section 6.3 for details of jump range
Size: Bit

Flags Updated: none

Bytes: 2
Cycles: 6t/3nt
Encoding:
1{1]1]0f1]1]0]| 0 rel8

2/23/96 207 Addressine Modes and Data Tvnes

LEA Load effective address

Syntax: LEA Rd, Rs+offset8/16

Operation: (Rd) <-- (Rs)+offset8/16

Description: The word specified by the source operand is added to the offset value and the result
is stored into the register specified by the destination operand. The source and destination operands
are both registers. The offset value is an immediate data field of either 8 or 16 bits in length. The
source data is not affected by the operation.

This instruction mimics the address calculation done during other instructions when the register
indirect with offset addressing mode is used, allowing the resulting address to be saved for other

purposes.

Note: The result of this operation is always a word since it duplicates the calculation of the indirect
with offset addressing mode.

Size: Word-Word

Flags Updated: none

LEA Rd, Rs+offset8

Bytes: 3
Cycles: 3
Encoding:
010l 0|OfO]|O]O O(d|d|d|O0]| s|s]|s

byte 3: offset8

LEA Rd, Rs+offsetl6

Bytes: 4
Cycles: 3
Operation: (Rd) <-- (Rs)+offset16
Encoding:
oj1,0,01]0]j0]0 O|d{d|d|O0]| s| s]|s

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

XA User Guide 208 2/23/96

LSR Logical Shift Right

Syntax: LSR dest, count
Operation:

Do While (count not equal to 0)
(C) <- (dest.0)

(dest.bit n) <- (dest.bit n+1)
(dest.msb) <- 0

count = count-1

End While

Description: If the count operand is greater than the variable specified by the destination
operand is logically shifted right by the number of bits specified by the count operand. The
MSBs of the result are filled with zeroes.The low-order bits are shifted out through the C (carry)
bit. If the count operand is 0, no shift is performed.The count operand is a positive value which
may be from O to 31. The data size may be 8, 16, or 32 bits. In the case of 32-bit shifts, the
destination operand must be the least significant half of a double word register. The count is not
affected by the operation.

Note:

- For Logical Shift Left, use ASL ignoring the N flag.

- If shift count (count in Rs) exceeds data size, the shifting is truncated to 5 bits, i.e., 32 else for
immediate shift count, shifting is continued until count is O.

- a double word register is double-word aligned in the register file (R1:R0, R3:R2, R5:R4, or
R7:R6).

Size: Byte, Word, Double Word
Flags Updated: C,N, Z (N =0 after an LSR)
LSR Rd,Rs (Rs = Byte-register)

Operation:
(Rd)

0 —» MSB——»LSB—¥»t C

Bytes: 2
Cycles: For 8/16 bit shifts --> 4+1 for each 2 bits of shift
For 32 bit shifts --> 6+1 for each 2 bits of shift

Encoding:

111101 0|SZ1|SZ0| 0| 0| |d|d|d|d| s|s]|s|s

2/23/96 209 Addrescino Madec and Data Tunec

LSR Rd, #data4
Rd, #datas5

Operation:

(Rd)

0 —» MSB——»LSB

Bytes: 2
Cycles:

For 8/16 bit shifts --> 441 for each 2 bits of shift
For 32 bit shifts --> 6+1 for each 2 bits of shift

Encoding: (for byte and word data sizes)
111(0]| 1|SZ1|SZ20| O #data4
(for double word data size)
1 101} 1[{1]0]|O #data5

Note: SZ1/SZ0 = 00: byte operation; SZ1/SZ0 = 01: reserved; SZ1/SZ0 = 10: word operation;
SZ1/SZ0 = 11: double word operation.

YA Tlear Guide

210

2/23/96

MOV . Move Data

Syntax: MOV dest, src
Operation: dest <- src

Description: The byte or word specified by the source operand is copied into the variable specified
by the destination operand. The source data is not affected by the operation.

Source and destination operands may be a register in the register file, an indirect address specified
by a pointer register, an indirect address specified by a pointer register added to an immediate
offset of 8 or 16 bits, or a direct address. Source operands may also be specified as immediate data
contained within the instruction. Auto-increment of the indirect pointers is available for simple
indirect (not offset) addressing.

Size: Byte-Byte, Word-Word

Flags Updated: N, Z

MOV Rd,Rs
Bytes: 2
Cycles: 3
Operation: (Rd) <-- (Rs)
Encoding:
1]0[0fO0fSZ|O|O] 1 d{d|d|d]| s|s|s|s
MOV Rd, [Rs]
Bytes: 2
Cycles: 3
Operation: (Rd) <-- (WS:Rs))
Encoding:
1]0f0|O0fSZ|O|1]0O0 d{d|d|d|O0|s |s |s

2/23/96 211 Addrescing Madec and Data Tvnes

MOV [Rd], Rs

Bytes: 2
Cycles: 3
Operation: ((WS:RQ)) <-- (Rs)
Encoding:
1|10l 0|]O0|SZ|0| 1|0 s|s|s|s|1|d|d]|d

MOV Rd, [Rs+offset8]

Bytes: 3
Cycles: 5
Operation: (Rd) <-- ((WS:Rs)+offset8)
Encoding:
11 0| 0] 0|SZ| 1|0 O d|d|{d|d|O0|s |s |s

byte 3: offset8

MOV [Rd+offset8], Rs

Bytes: 3
Cycles: 5
Operation: ((WS:Rd)+offset8) <-- (Rs)
Encoding:
1|10(0]|] 0|SZ|1]|0]|0O0 s|s|{s|s|1|d]|d|d

byte 3: offset8

MOV Rd, [Rs+offset16]

Bytes: 4
Cycles: 5
Operation: (Rd) <-- ((WS:Rs)+offset16)
Encoding:
110l 0] 0(SZ|1|0] 1 dj{d|d|d|[0]|s s |s

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

XTA FTame Ml 211 2M2V0A

MOV [Rd+offsetl16], Rs

Bytes: 4

Cycles: 5

Operation: ((WS:Rd)+offset16) <-- (Rs)

Encoding:

110] 0| 0(SZf1|0]1

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

MOV Rd, [Rs+]

Bytes: 2
Cycles: 4
Operation: (Rd) <-- ((WS:Rs))

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)

Encoding:

10| 0| 0|SZ|O| 1]

MOV [Rd+],Rs

Bytes: 2
Cycles: 4

Operation: ((WS:Rd)) <-- (Rs)

(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)

Encoding:

1] 0| 0|0(SZ|O| 1] 1

MOV [Rd+], [Rs+]

Bytes: 2
Cycles: 5
Operation: ((WS:Rd)) <-- (WS:Rs))

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)
(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)

Encoding:

1101 0|1(SZ|0|0fO0

2123196

213

Addreccino Madec and Data Tvnec

MOV direct, Rs

Bytes: 3
Cycles: 4
Operation: (direct) <-- (Rs)
Encoding:
1 0| 0| O0|SZ|1]1]0 direct:3 bits
byte 3: lower 8 bits of direct
MOV Rd, direct
Bytes: 3
Cycles: 4
Operation: (Rd) <-- (direct)
Encoding:
1100 0(SZ|1|1]|0 direct:3 bits
byte 3: lower 8 bits of direct
MOV direct, [Rs]
Bytes: 3
Cycles: 4
Operation: (direct) <-- ((WS:Rs))
Encoding:
1]0] 1] 0(SZJ]0|0]| O direct:3 bits
byte 3: lower 8 bits of direct
MOV [Rd], direct
Bytes: 3
Cycles: 4
Operation: ((WS:Rd)) <-- (direct)
Encoding:
1]10]1]0|SZ|]0| 0| O direct:3 bits

byte 3: lower 8 bits of direct

WA FTanw MalAdL A14

AINA N

MOV Rd, #data8

Bytes: 3
Cycles: 3
Operation: (Rd) <-- #data8
Encoding:
100 1[0]j]0]|0]|1 d|d|d|d| 1] 0| 0] O

byte 3: #data8

MOV Rd, #datal6

Bytes: 4
Cycles: 3
Operation: (Rd) <-- #datal6
Encoding:
110011001 d|d|d|d| 1] 0| 0] O

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

MOV [Rd], #data8

Bytes: 3
Cycles: 3
Operation: ((WS:Rd)) <-- #data8
Encoding:
1] 0f0]1]0(O]|1]0O 0O{d|{d|d]| 1] 0] 0| O

byte 3: #data8

MOV [Rd], #datal6

Bytes: 4
Cycles: 3
Operation: ((WS:Rd)) <-- #datal6
Encoding:
1{0l0|1]1{0O}|1{O0 0|jd|d|d| 1] 0] 0] O

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

2/23/96 215 Addressing Modes and Data Tvpes

MOV [Rd+], #data8

Bytes: 3

Cycles: 4

Operation: ((WS:Rd)) <-- #data8
(Rd) <-- (Rd) + 1

Encoding:

110/ 0f[1]0|0]|1|1 0O|djd|d]| 1] 0| 0| O
byte 3: #data8

MOV [Rd+], #datal6

Bytes: 4

Cycles: 4

Operation: ((WS:Rd)) <-- #datal6
(Rd) <-- (Rd) +2

Encoding:

11001 1]0]1]1 Ojfd|d|fd| 1] 0| 0| O

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

MOV [Rd+offset8], #data8

Bytes: 4
Cycles: 5
Operation: ((WS:Rd)+offset8) <-- #data8
Encoding:
100 1] 0] 10| O Ofdfd| d| 1f 0] O O

byte 3: offset8
byte 4: #data8

MOV [Rd+offset8], #datal6

Bytes: 5
Cycles: 5
Operation: ((WS:Rd)+offset8) <-- #datal6
Encoding:
1]0|0f 1] 1] 1] 00O 0| d{d|d| 1] 0] 0| O

byte 3: offset8
byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

YA TTear (inida 71K Amnnine

MOV [Rd+offset16], #data8

Bytes: 5
Cycles: 5
Operation: ((WS:Rd)+offset16) <-- #data8
Encoding:
11001 0] 1] 0] 1 0y d{d|d| 1] 0] 0| O
byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8
MOV [Rd+offset16], #datal6
Bytes: 6
Cycles: 5
Operation: ((WS:Rd)+offset16) <-- #datal6
Encoding:
1100 1|1] 1] 0|1 0|l d|{ d| d|] 1l 0] O| O
byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #datal6
byte 6: lower 8 bits of #datal6
MOV direct, #data8
Bytes: 4
Cycles: 3
Operation: (direct) <-- #data8
Encoding:
1 olof1|0]1]1]0 0 (direct: 3 bits| 1 [0 |0 |[O
byte 3: lower 8 bits of direct
byte 4: #data8
MOV direct, #datal6
Bytes: 5
Cycles: 3
Operation: (direct) <-- #datal6
Encoding:
1 ojo| 1111 1|0 0 [direct: 3 bits| 1| 0| 0| O

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

2/23/96 217

Addreccinoe Madec and Data Tuneac

MOV direct, direct

Bytes: 4
Cycles: 4
Operation: (direct) <-- (direct)
Encoding:
1 0l 0| 1|8z} 1] 1] 1 d dir: 3 bits s dir: 3 bits
byte 3: lower 8 bits of direct (dest)
byte 4: lower 8 bits of direct (src)
MOV Rd, USP (move from user stack pointer)
Bytes: 2
Cycles: 3
Operation: (Rd) <-- (USP)
Encoding:
1{0j0(1|{O0O|O|O]|O d|{d|d 110111
MOV USP, Rs (move to user stack pointer)
Bytes: 2
Cycles: 3
Operation: (USP) <-- (Rs)
Encoding:
1]0j0(1}11}(0}]0]0 s|s|s 1(11]1

VA TToar (iida A1

MOV Move Bit to Carry

Syntax: MOV (C, bit

Operation: (C) <-- (bit)

Description: Copies the specified bit to the carry flag.

Size: Bit

Flags Updated: none

Note: C is written as the destination of the move, not as a status flag

Bytes: 3
Cycles: 4

Encoding:

0o(0|jJ0|0]1]0]|0O]|O 0[O0 1|1 0] Of O] bit: 2
byte 3: lower 8 bits of bit address

2/23/96 219 Addressing Modes and Data Tvpes

MOV Move Carry to Bit

Syntax: MOV bit, C

Operation: (bit) <-- (C)

Description: Copies the carry flag to the specified bit.
Size: Bit

Flags Updated: none

Bytes: 3
Cycles: 4
Encoding:
0| 0)j0|0O0|]1|O|O{O 0O[0| 1] 10| 0] bit:2

byte 3: lower 8 bits of bit address

XA User Guide 220 212104

MOVC Move Code

Syntax: MOVC Rd, [Rs+]

Operation: (Rd) <-- code memory ((WS:Rs))
(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)

Description: Contents of code memory are copied to (or from®)an internal register. The byte or
word specified by the source operand is copied to the variable specified by the destination operand.
In the case of MOVC, the pointer segment selection gives the choices of PCy3_14 or CS segment

(current working segment referred here as WS), rather than DS or ES as is used for all other
instructions.

Size: Byte-Byte, Word-Word

Flags Updated: N, Z

Bytes: 2
Cycles: 4
Encoding:
110l 0]|]0|SZ|0|O0]|O d|d|d|d|[O0O]|s |s |s

6. Could be present in some XA derivatives with writable code memory like Flash etc.

2/23/96 221 Addressing Modes and Data Types

MOVC Move Code to A (DPTR)

Syntax: MOVC A, [A+DPTR]

Operation: PC <-PC+2
(A) <-- code memory (PC.23-16:(A) + (DPTR))

Description: The byte located at the code memory address formed by the sum of A and the DPTR
is copied to the A register. The A and DPTR registers are pre-defined registers used for 80C51
compatibility. This instruction is included for 80C51 compatibility. See Chapter 9 for details of
80C51 compatibility features.

Size: Byte-Byte

Flags Updated: N, Z

Bytes: 2
Cycles: 6
Encoding:
1]1]0[0j1]0|J0OfOfO oj1{ofo|1)1yj1{0

XA User Guide 2729 2/721QA

MOVC Move Code to A (PC)

Syntax: MOVC A, [A+PC]

Operation: PC <- PC+2
(A) <-- code memory [PC.23-16: (A +PC.15-0)]

Note: Only 16-bits of A+PC are used

Description: The byte located at the code memory address formed by the sum of A and the current
Program Counter value is copied to the A register. The A register is a pre-defined register used for
80C51 compatibility. This instruction is included for 80C51 compatibility. See Chapter 9 for
details of 80C51 compatibility features.

Size: Byte-Byte

Flags Updated: N, Z

Bytes: 2
Cycles: 6
Encoding:
1,0, 0]1|]0j0]J0]|O of1j]0j0}|1|1]0| O

2/23/96 223 Addressing Modes and Data Types

MOVS Move Short

Syntax: MOVS dest, #data

Description: Four bits of signed immediate data are moved to the destination. The immediate data
is sign-extended to the proper size, then moved to the variable specified by the destination operand,
which may be a byte or a word. The immediate data range is +7 to -8. This instruction is used to

save time and code space for the many instances where a small data constant is moved to a

destination.
Size: Byte-Byte, Word-Word

Flags Updated: N, Z

MOVS Rd, #datad

Bytes: 2
Cycles: 3
Operation: (Rd) <-- sign-extended #data4
Encoding:

1|0 1]|1|SZ|0ofO0]| 1 d|d|d]|d #datad
MOVS [Rd], #data4
Bytes: 2
Cycles: 3
Operation: ((WS:Rd)) <-- sign-extended #data4
Encoding:

1101 1|SZl0|1]0 0| dfd| d #data4
MOVS [Rd+], #datad
Bytes: 2
Cycles: 4
Operation: ((WS:Rd)) <-- sign-extended #datad

(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)

Encoding:

1101 1|SZ|]0| 1] 1 0jd|d| d #datad
XA User Guide 224

2/23/96

MOVS [Rd+offset8], #datad

Bytes: 3
Cycles: 5
Operation: ((WS:Rd)+offset8) <-- sign-extended #data4 -
Encoding:
10|11 1|SZ|1|0]0 0 d|d| d #data4

byte 3: offset8

MOVS [Rd+offset16], #datad

Bytes: 4
Cycles: 5
Operation: ((WS:Rd)+offset16) <-- sign-extended #data4
Encoding:
1] 0| 1] 1|SZ| 10| 1 0 d| d| d #datad

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

MOVS direct, #datad

Bytes: 3
Cycles: 3
Operation: (direct) <-- sign-extended #data4
Encoding:
10| 1| 1|SZ| 1] 1|0 0 |direct: 3 bits #data4

byte 3: lower 8 bits of direct

2/23/96 225 Addressing Modes and Data Types

MOVX Move External Data

Syntax: MOVX dest, src

Description: Move external data to or from an internal register. The byte or word specified by the
source operand is copied into the variable specified by the destination operand. This instruction
allows access to data external to the microcontroller in the address range of 0 to 64K. The standard
indirect move may access external data only above the boundary where internal data RAM ends,
whereas MOVX always forces an external access. MOVX only operates on the first 64K of
external data memory. This instruction is included to allow compatibility with 80C51 code.

Size: Byte-Byte, Word-Word

Flags Updated: N, Z

MOVX Rd, [Rs]

Bytes: 2
Cycles: 6
Operation: (Rd) <-- external data memory ((Rs))
Encoding:
101 0fSZ|1]1]1 d|d|{d|{d|O0O]|s |s |s

MOVX [Rd], Rs

Bytes: 2
Cycles: 6
Operation: external data memory ((Rd)) <-- (Rs)
Encoding:
10| 1] 0|SZ[1]|1]1 s|s|s|s|1|d|d|d

XA User Guide 226 2/23/96

MUL.w 16x16 Signed Multiply
MULU.b 8x8 Unsigned Multiply
MULU.w 16x16 Unsigned Multiply

Description: The byte or word specified by the source operand is multiplied by the variable
specified by the destination operand.

The destination operand must be the first half of a double size register (word for a byte multiply
and double word for a word multiply). The result is stored in the double size register.

Note: a double word register is double-word aligned in the register file (R1:R0, R3:R2, R5:R4,
and R7:R6).

Size: Byte-Byte, Word-Word
Flags Updated: C, V,N, Z

The carry flag is always cleared by a multiply instruction. The V flag is set in the following
cases, otherwise it is cleared:

- MULU.b: V is set if the result of the multiply is greater than FFh (the upper byte is not equal
to 0).

- MULU.w: V is set if the result of the multiply is greater than FFFFh (the upper word is not
equal to 0).

- MUL.w: V is set if the absolute value of the result of the multiply is greater than 7FFFh (the
upper word is not a sign extension of the lower word).

Examnles:

Examples:

a) MUL.w RO,RS5 stores the product of word register O and word register 5 in double word
register O (least significant word in word register RO, most significant word in word register R1).

b) MULU.b R4L, R4H will store the MS byte of the product of R4L and R4H in R4H and the
LS byte in R4L.

2/23/96 227 Addressing Modes and Data Types

MUL.w Rd,Rs
(signed 16 bits * 16 bits --> 32 bits)

Bytes: 2

Cycles: 12

Operation: (Rd+1) <-- Most significant word of (Rd) * (Rs) (signed multiply)
(Rd) <-- Least significant word of (Rd) * (Rs)

Encoding:

1|11 1] 0| 01| 1] 0 djd|d]|d| s|s]|s]|s

MUL.w Rd, #datal6
(signed 16 bits * 16 bits --> 32 bits)

Bytes: 4
Cycles: 12
Operation: (Rd+1)<-- Most significant word of (Rd) * #datal6 (signed multiply)
(Rd) <-- Least significant word of (Rd) * #datal6
Encoding:
11,110 1] 0] 0f 1 d|d|{d|d]|] 1] 0] 0] O

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

MULU.b Rd,Rs
(unsigned 8 bits * 8 bits --> 16 bits)

Bytes: 2
Cycles: 12
Operation: (RdH) <-- Most significant byte of (Rd) * (Rs) (unsigned multiply)
(RAL) <-- Least significant byte of (Rd) * (Rs)
Encoding:
111,110, 0,000 d|d|d|d| s|s|s|s

XA User Guide 228 2/23/96

MULU.b Rd, #data8
(unsigned 8 bits * 8 bits --> 16 bits)

Bytes: 3
Cycles: 12
Operation: (RdH) <-- Most significant byte of (Rd) * #data8 (unsigned multiply)
(RdL) <-- Least significant byte of (Rd) * #data8
Encoding:
1|11 0] 1] 00| O d{d|{d|d|0|0]|]O0|O

byte 3: #data8

MULU.w Rd,Rs
(unsigned 16 bits * 16 bits --> 32 bits)

Bytes: 2
Cycles: 12
Operation: (Rd+1) <-- Most significant word of (Rd) * (Rs) (unsigned multiply)
(Rd) <-- Least significant word of (Rd) * (Rs)
Encoding:
1]1{1] 0] 0 1] 0] O0 d|d|d|d]| s| s|s]|s

MULU.w Rd, #datal6
(unsigned 16 bits * 16 bits --> 32 bits)

Bytes: 4
Cycles: 12
Operation: (Rd+1)<-- Most significant word of (Rd) * #datal6 (unsigned multiply)
(Rd) <-- Least significant word of (Rd) * #datal6
Encoding:
it)1(1y0}10f0f1] |[d|d]|]d|d]| 0|l 0] 0] O

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

2/23/96 229 Addressine Modes and Data Tvnes

NEG Negate

Syntax: NEG Rd
Operation: Rd <-- (Rd) + 1

Description: The destination register is negated (twos complement). The destination may be a byte
or a word.

Size: Byte, Word
Flags Updated: V,N, Z

The V flag is set if a twos complement overflow occurred: the original value = result = 8000 hex
for a word operation or 80 hex for a byte operation.

Bytes: 2
Cycles: 3
Encoding:
10| 0] 1|SZ[(0 (0 |O d|d|[d|d]|] 1] 0| 1] 1

Y A Tlear Gnide 23N 2/23/9A

NOP No Operation

Syntax: NOP

Operation: PC<-PC+1

Description: Execution resumes at the following instruction. This instruction is defined as being
one byte in length in order to allow it to be used to force word alignment of instructions that are
branch targets, or for any other purpose. It may also be used to as a delay for a predictable amount
of time.

Size: None

Flags Updated: none

Bytes: 1
Cycles: 3
Encoding:

0ojojoj|jojoj0j0]o0

2/23/96 231 Addressing Modes and Data Types

NORM Normalize

Syntax: NORM Rd, Rs

Operation:
Rd)
MSB«——LSB («+—0

Description: Logically shifts left the contents of the destination until the MSB is set, storing the
number of shifts performed in the count (source) register. The data size may be 8, 16, or 32 bits.

If the destination value already has the MSB set, the count returned will be 0. If the destination

value is 0, the count returned will be 0, the N flag will be cleared, and the Z flag will be set. For all
other conditions, the N flag will be 1 and the Z flag will be 0.

Note: a double word register is double-word aligned in the register file (R1:R0, R3:R2, R5:R4, or
R7:R6).
The last pair, i.e, R7:R6 is probably not a good idea as R7 is the current stack pointer.
Size: Byte, Word
Flags Updated: N, Z
Bytes: 2
Cycles: For 8 or 16 bit shifts -> 4 + 1 for each 2 bits of shift
For 32 bit shifts -> 6 + 1 for each 2 bits of shift

Encoding:

1| 10| 0|SzZ1|Sz20({1 | 1| |d|d|d |d| s|s]|s|s

Note: SZ1/SZ0 = 00: byte operation; SZ1/SZ0 = 01: reserved; SZ1/SZ0 = 10: word operation;
SZ1/SZ0 = 11: double word operation.

X A Tlcer Gnide 232 2/23/96

OR Logical OR

Syntax: OR dest, src

Description: Bitwise logical OR the contents of the source to the destination. The byte or word
specified by the source operand is logically ORed to the variable specified by the destination

operand. The source data is not affected by the operation.

Size: Byte-Byte, Word-Word

Flags Updated: N, Z

OR Rd,Rs

Bytes: 2

Cycles: 3

Operation: (Rd) <-- (Rd) + (Rs)
Encoding:

O(11 1, 0(SZ| 0|0 1

OR Rd, [Rs]
Bytes: 2
Cycles: 4

Operation: (Rd) <-- (Rd) + ((WS:Rs))
Encoding:

o|1]1,0|SZj0| 1|0

OR [Rd],Rs
Bytes: 2
Cycles: 4

Operation: ((WS:Rd)) <-- (WS:RQ)) + (Rs)
Encoding:

O]l 111 0|SZJ0o|1]0

2/23/96 233

Addressing Modes and Data Tvnes

OR Rd, [Rs+offset8]

Bytes: 3
Cycles: 6
Operation: (Rd) <-- (Rd) + ((WS:Rs)+offset8)
Encoding:
of(1f1]0|SZ|1]|0]|0O d|d|d|d|[O0O|s |s |s

byte 3: offset8

OR [Rd+offset8], Rs

Bytes: -3
Cycles: 6
Operation: ((WS:Rd)+offset8) <-- (WS:Rd)+offset8) + (Rs)
Encoding:
o111 0|SZ|]1]0]|0 s|{s|s|s|1|d|d]|d

byte 3: offset8

OR Rd, [Rs+offset16]

Bytes: 4
Cycles: 6
Operation: (Rd) <-- (Rd) + ((WS:Rs)+offset16)
Encoding:
o|1]1]0|SZ|1|0] 1 d|d|d|[d|[O0]|s|s |s

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

OR [Rd+offset16], Rs

Bytes: 4
Cycles: 6
Operation: ((WS:Rd)+offsetl6) <-- (WS:Rd)+offset16) + (Rs)
Encoding:
0O|1] 1] 0|SZ|1|0] 1 s|s|s|s|1]|]d|d|d

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

YA TTeer Guide 234 2/73/06

OR Rd, [Rs+]

Bytes: 2
Cycles: 5
Operation: (Rd) <-- (Rd) + ((WS:Rs))
(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)

Encoding:
o111, 0|SZ|0| 1] 1 d{d|d|d|0|s |s |s
OR [Rd+],Rs
Bytes: 2
Cycles: 5

Operation: ((WS:RA)) <-- (WS:RA)) + (Rs)
(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)
Encoding:

Ol 1] 1} 0|SZz| 0| 1] 1 s|s|s|s|1]|]d]|]d]|d

OR direct, Rs

Bytes: 3
Cycles: 4
Operation: (direct) <-- (direct) + (Rs)
Encoding:
o|j1y1y0(Szj1]11|0 s| s| s | s | 1 |direct: 3bits

byte 3: lower 8 bits of direct

OR Rd, direct

Bytes: 3
Cycles: 4
Operation: (Rd) <-- (Rd) + (direct)
Encoding:
oj 1| 108z 1(1}|0 d|d|d|d]| O |direct: 3bits

byte 3: lower 8 bits of direct

2/23/96 235 Addressing Modes and Data Types

OR Rd, #data8

Bytes: 3
Cycles: 3
Operation: (Rd) <-- (Rd) + #data8
Encoding:
11001 0]0|O0] 1 d|d|d|[d|O0|] 1] 1]0

byte 3: #data8

OR Rd, #datal6

Bytes: 4
Cycles: 3.
Operation: (Rd) <-- (Rd) + #datal6
Encoding:
1 o0l 1|10 0] 1 d{d|d|fd|] 0| 1[1]0

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

OR [Rd], #data8

Bytes: 3
Cycles: 4
Operation: ((WS:Rd)) <-- (WS:Rd)) + #data8

Encoding:

1]10[0|1]0|]0] 10O 0O|d|d|fd]|]Oo| 1] 1]0
byte 3: #data8

OR [Rd], #datal6

Bytes: 4
Cycles: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) + #datal6
Encoding:
1 0011170 1]0 Oj{d|d|d|]Oo| 1] 1]0

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

XA User Guide - 236 2/23/96

OR [Rd+], #data8

Bytes: 3

Cycles: 5

Operation: ((WS:RAQ)) <-- (WS:R4)) + #data8
(Rd) <-- (Rd) + 1

Encoding:

1100 1] 00| 1] 1 0|jd|fd|d|O0| 1] 1]0
byte 3: #data8

OR [Rd+], #datal6

Bytes: 4

Cycles: 5

Operation: ((WS:Rd)) <-- ((WS:Rd)) + #datal6
(Rd) <-- (Rd) +2

Encoding:

1100|110 1] 1 O(d|d|d|of 1] 1|0

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

OR [Rd+offset8], #data8

Bytes: 4
Cycles: 6
Operation: ((WS:Rd)+offset8) <-- (WS:Rd)+offset8) + #data8
Encoding:
110,01l 0[1[0}0O 0jd|d|d|f O] 1] 1] O

byte 3: offset8
byte 4: #data8

OR [Rd+offset8], #datal6

Bytes: 5
Cycles: 6
Operation: ((WS:Rd)+offset8) <-- (WS:Rd)+offset8) + #datal6
Encoding:
10,01 111{0]O0 0O, d{d{d|joOof1|f1] O

byte 3: offset8
byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

2/23/96 237 Addressing Modes and Data Tvpes

OR [Rd+offsetl6], #data8

Bytes: 5
Cycles: 6
Operation: ((WS:Rd)+offset16) <-- (WS:Rd)+offset16) + #data8
Encoding:
1]0l0]1]0|1(|[0]1 0| d|d|{djfoOo|] 1] 1] 0

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

OR [Rd+offset16], #datal6

Bytes: 6
Cycles: 6
Operation: ((WS:Rd)+offset16) <-- (WS:Rd)+offset16) + #datal6
Encoding:
1{0[(O0] 1] 1}1]0]1 0| d|dfd| O] 1] 1|0

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #datal6
byte 6: lower 8 bits of #datal6

OR direct, #data8

Bytes: 4
Cycles: 4
Operation: (direct) <-- (direct) + #data8
Encoding:
1 oo 1{O0f1(|1]O O |direct: 3bits| 0| 1| 1| O

byte 3: lower 8 bits of direct
byte 4: #data8

OR direct, #datal6

Bytes: 5
Cycles: 4
Operation: (direct) <-- (direct) + #datal6
Encoding:
1 ooty 111110 O |direct: 3bits| 0| 1| 1] O

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

XA User Guide 238 2/23/96

ORL Logical OR bit

Syntax: ORL C,bit

Operation:(C) <-- (C) + (bit)

Description: Logical (inclusive) OR abit to the Carry flag. Read the specified bit and logically OR
it to the Carry flag.

(C is written as the destination of the ORL, not as a status flag)

Size: Bit

Flags Updated: none

Bytes: 3
Cycles: 4
Encoding:
0|0 0j]0]1]0]|]0]O0 0| 1] 1] 0] O] Of bit:2

byte 3: lower 8 bits of bit address

2/23/96 239 Addressing Modes and Data Types

ORL Logical OR complement of bit

Syntax: ORL C, /bit
Operation: (C) <-- (C) + (bit)
Description: Logically OR the complement of a bit to the Carry flag. Read the specified bit,

complement it, and logically OR it to the Carry flag.
(C is written as the destination of the move, not as a status flag)

Flags Updated: none
Bytes: 3
Cycles: 4
Encoding:
0| 0|]O0|]Of1|]O0OfO0}O O 1] 1] 1] 0| O bit:2

byte 3: lower 8 bits of bit address

XA User Guide 240 ' 2/23/96

POP Pop
POPU Pop User

Syntax: POP dest

Description: The stack is popped and the data written to the specified directly addressed location.
The data size may be byte or word. POP uses the current stack pointer, while POPU forces an
access to the user stack. '

Size: Byte, Word

Flags Updated: none

POP direct
Bytes: 3
Cycles: 5

Operation: (direct) <-- ((SP))
(SP) <-- (SP) +2
Encoding:

10| 0fO0|SZ{1]1]1 0|0 |0 |1 |O [direct: 3 bits
byte 3: 8 bits of direct

POPU direct

Bytes: 3

Cycles: 5

Operation: (direct) <-- ((USP))
(USP) <-- (USP) +2

Encoding:

1|1 0|l 0[O0|SZ| 1| 1] 1 0[0| 0| O] O |direct: 3 bits
byte 3: 8 bits of direct

2/23/96 241 Addressing Modes and Data Types

POP Pop Multiple

POPU Pop User Multiple
Syntax: POP Rlist
POPU Rlist

Description: Pop the specified registers (one or more) from the stack. The stack is popped (from
1 to 8 times) and the data stored in the specified registers. Any combination of word registers in
the group RO to R7 may be popped in a single instruction in a word operation. Or, any combination
of byte registers in the group ROL to R3H or the group R4L to R7H may be popped in a single
instruction in a byte operation. POP uses the current stack pointer, while POPU forces an access to

the user stack.

Note: Rlist is a bit map that represents each register to be popped. The registers are in the order R7,
R6,RS,......, RO, for word registers or R3H.... ROL, or R7H... R4L for byte registers. The pop order
is from right to left, i.e., the register specified by the rightmost one in Rlist will be popped first, etc.

The order must be the reverse of that used by the preceding PUSH instruction.

Size: Byte, Word

Flags Updated: none

POP Rlist
Bytes: 2
Cycles: 4 + 2 per additional register

Operation: Repeat for all selected registers (Ri):

(Ri) <-- ((SP))
(SP) <-- (SP) + 2

Encoding:
O|HL 1| 01(SZ|1|1]1 Rlist
POPU Rlist
Bytes: 2
Cycles: 4 + 2 per additional register
Operation: ~ Repeat for all selected registers (Ri):
(Ri) <-- (USP))
(USP) <-- (USP) +2
Encoding:
OfHL| 1|1 (SZ|1 |1 |1 Rlist

XA User Guide 242

2/23/96

PUSH Push

PUSHU Push User

Syntax: PUSH src
PUSHU src

Description: The specified directly addressed data is pushed onto the stack. The data size may be
byte or word. PUSH uses the current stack pointer, while PUSHU forces an access to the user stack.

Size: Byte, Word

Flags Updated: none

PUSH direct
Bytes:

Cycles:
Operation:

Encoding:

3
5

(SP) <-- (SP) -2
((SP)) <-- (direct)

1

0

0

SZ

0 |direct: 3 bits

byte 3: 8 bits of direct

PUSHU dire

Ryutag:

0 y wo.
Cycles:
Operation:

Encoding:

ct

2
J

5

(USP) <-- (USP) - 2
((USP)) <-- (direct)

1

0

0

SZ

0 | O |direct: 3 bits

byte 3: 8 bits of direct

2/23/96

243

Addressing Modes and Data Types

PUSH Push Multiple
PUSHU Push User Multiple

Syntax: PUSH Rlist
PUSHU Rlist

Description: Push the specified registers (one or more) onto the stack. The specified registers are
pushed onto the stack. Any combination of word registers in the group RO to R7 may be pushed in -
a single instruction in a word operation. Or, any combination of byte registers in the group ROL to
R3H or the group R4L to R7H may be pushed in a single instruction in a byte operation. The data
size may be byte or word. PUSH uses the current stack pointer, while PUSHU forces an access to
the user stack. PUSHU is only available to system mode code.

Note: Rlist is a bit map that represents each register to be popped. The registers are in the order R7,
R6,RS......., RO, for word registers or R3H.... ROL, or R7H... R4L for byte registers. The pop order
is from left to right, i.e., the register specified by the leftmost one in Rlist will be pushed first, etc.
The order must be the reverse of that used by the corresponding POP instruction. This order results
in the registers appearing in memory in the same order that they appear in the register file.

Size: Byte, Word

Flags Updated: none

PUSH Rlist
Bytes: 2
Cycles: 3 + 3 per additional register

Operation: Repeat for all selected registers (Ri):
QD) ~__/QD\ _)
L) N== (o1) - &

((SP)) <-- (Ri)
Encoding:

O|HL{O|O|SZ|1 |1 |1 Rlist

PUSHU Rlist

Bytes: 2
Cycles: 3 + 3 per additional register
Operation: ~ Repeat for all selected registers (Ri):
(USP) <-- (USP) -2
((USP)) <-- (Ri)
Encoding:

OHLIO|11|SZ|1 |1 |1 Rlist

XA User Guide 244 2/23/96

RESET Software Reset

Syntax: RESET

Operation: (PC) <-- vector(0)
(PSW) <-- vector(0)
(SFRs) <-- reset values (refer to the description of reset for details)

Description: The chip is reset exactly as if the external hardware reset has been asserted with
the exception that it does not sample inputs for configuration, e.g., EA, BUSW, etc. When a
RESET instruction is executed, the chip is internally reset, but no external RESET pulse is
generated. The above inputs which are latched during rising edge of a RESET pulse, hence does
not affect the chip configuration.

Flags Updated: The entire PSW is set to the value specified in the reset vector.

Bytes: 2
Cycles: 19
Encoding:
1]11]0f(1]0] 1] 1]0 ojojoj1jofofojo

2/23/96 245 Addressing Modes and Data Types

RET Return from Subroutine

Syntax: RET

Operation: (PC) <-- ((SP))
(SP) <-- (SP) +4

Description: A 24-bit return address is popped from the stack and used to replace the entire
program counter value (PCy3_g). This instruction is used to return from a subroutine that was called

with a CALL or Far Call (FCALL).
Note: if the XA is in page 0 mode, only a 16-bit address will be popped from the stack.
Size: None

Flags Updated: none

Bytes: 2
Cycles: 8/6 (PZ)
Encoding:
1 {101 0]1]1]0 1{]0|]0|0O|0Oj0O]|O0O]O

XA User Guide 246 2/23/96

RETI Return from Interrupt

Syntax: RETI

Operation: (PSW) <-- ((SSP))
(PC.23-0) <-- ((SSP))
(SSP) <-- (SSP) + 6

Description: A 24-bit return address is popped from the stack and used to replace the entire
program counter value. The Program Status Word is also restored by being popped from the stack.

This instruction is a privileged instruction (limited to system mode) and is used to return from
an interrupt/exception. An attempt to use RETI in user mode will generate a trap.

Note: if the XA is in page 0 mode, only a 16-bit address will be popped from the stack.
Size: None

Flags Updated: All PSW bits are written by the POP of the PSW value in System mode. In User
mode, the protected PSW bits are not altered.

Bytes: 2
Cycles: 10/8 (PZ)
Encoding:
i{1f(o0f(1|0|1|1f0f |(1]J]O|lO|1T})0]O0O|O0O|O

2/23/96 247 Addressing Modes and Data Types

RL Rotate Left
Syntax: RL Rd, #data4
Operation:
Rd)
l_ MSB-«——LSB <—|

count <- #data4

Do While (count not equal to 0)
(desty) <- (desty,gp)

(dest,) <- (dest,_1)

(count) <- count -1

End While

Description: The variable specified by the destination operand is rotated left by the number of bits
specified in the immediate data operand. The data size may be 8 or 16 bits. The number of bit
positions shifted may be from O to 15.

Size: Byte, Word

Flags Updated: N, Z

Bytes 2
Cycles 4 + 1 for each 2 bits of shift
Encodino:
Enceding:
1 11 0] 1|SZ] 0] 1 #data4
XA User Guide 248

2/723/96

RLC Rotate Left Through Carry

Syntax: RLC Rd, #data4

Operation:
Rd)
'— C 4 MSB<«+—LSB

count <- #data4

Do While (count not equal to 0)
(C) <- (destpygp)

(dest,) <- (dest,_1)

(desty) <- (C)

(count) <- count -1

End While

Description: The variable specified by the destination operand is rotated left through the carry flag
by the number of bits specified in the immediate data operand. The data size may be 8 or 16 bits.
The number of bit positions shifted may be from O to 15.

Size: Byte, Word

Flags Updated: C,N, Z

Bytes: 2
Cycles: 4 + 1 for each 2 bits of shift
Encoding:
11 1] 0] 1|8Z| 1| 1] 1 d|jd|d]|d #data4
2/23/96 249

Addressing Modes and Data Types

RR Rotate Right

Syntax: RR Rd, #data4

Operation:
Rd)

I—P MSB——»I].SB —l

count <- #data4

Do While (count not equal to 0)
(destp,gp) <- (destgp)

(dest,,_1) <- (dest,)

(count) <- count -1

End While

Description: If the count operand is greater than O, the destination operand is rotated right by
the number of bits specified in the immediate data operand. The data size may be 8 or 16 bits.
The number of bit positions shifted may be from O to 15. If the count operand is 0, no rotate is

performed.
Size: Byte, Word

Flags Updated: N, Z

Bytes: 2
Cycles: 4 + 1 for each 2 bits of shift
Encoding:

110 1] 1(SZ|0| O

#datad

XA User Guide

250

2/23/96

RRC Rotate Right Through Carry
Syntax: RRC Rd, #datad

Operation:
(Rd)

‘-—V C MSB—"—>LSB—|

count <- #data4

Do While (count not equal to 0)
(©) <- (desty)

(dest,) <- (dest,,1)

(destygp) <- (C)

(count) <- count -1

End While

Description: If the count operand is greater than 0, the destination operand is rotated right through
the carry flag by the number of bits specified in the immediate data operand. The data size may be
8 or 16 bits. The number of bit positions shifted may be from O to 15.

If the count operand is 0, no rotate is performed.

Size: Byte, Word

Flags Updated: C, N, Z

Bytes: 2
Cycles: 4 + 1 for each 2 bits of shift
Encoding:
110 1| 1|SZ] 1|11 d{d|d]|d #data4

2/23/96 251 Addressing Modes and Data Types

SETB Set Bit

Syntax: SETB bit
Operation: (bit) <-- 1
Description: Writes (sets) a 1 to the specified bit.

Size: Bit

Flags Updated:none
Bytes: 3
Cycles: 4
Encoding:
00|00 1|]0|O0}|O 0| 0O Of 1] O] O bit:2

byte 3: lower 8 bits of bit address

XA User Guide 252 22104

SEXT Sign Extend

Syntax: SEXT Rd

Operation: ifN=1
then (Rd) <-- FF in byte mode or FFFF in word mode
ifN=0
then (Rd) <-- 00 in byte mode or 0000 in word mode

Description: Copies the N flag (the sign bit of the last ALU operation) into the destination register.
The destination register may be a byte or word register.

Example:
SEXT.b RI1
if the result of the previous operation left the N flag set, then R1 <-- FF

Size: Byte, word

Flags Updated: none

Bytes: 2
Cycles: 3
Encoding:
110]0[11SZ0|0]|0 d{df{d|d]|] 1[0] 0] 1

2/23/96 253 Addressing Modes and Data Types

SUB Integer Subtract

Syntax: SUB dest, src

Operation: dest <- dest - src

Description: Performs a twos complement binary subtraction of the source and destination
operands, and the result is placed in the destination operand. The source data is not affected by the
operation.

Size: Byte-Byte, Word-Word

Flags Updated: C, AC,V,N,Z

SUB Rd,Rs
Bytes: 2
Cycles: 3
Operation: (Rd) <-- (Rd) - (Rs)
Encoding:
O(O0l1{0(SZ|O0| O] 1 d|(d|d|d]| s|s|s]|s
SUB Rd, [Rs]
Bytes: 2
Cycles: 4
Operation: (Rd) <-- (Rd) - (WS:Rs))
Encoding:
OO0l 1j0(SZJo|1]|0O d|d|{d|d|O0|s|s |s
SUB [Rd], Rs
Bytes: 2
Cycles: 4
Operation: ((WS:Rd)) <-- ((WS:Rd)) - (Rs)
Encoding:
0|0l 1] 0|SZ|0|1]|0 s|s|s|s|1|d|d]|d

XA User Guide 254 2/23/96

SUB Rd, [Rs+offset8]

Bytes: 3
Cycles: 6
Operation: (Rd) <-- (Rd) - ((WS:Rs)+offset8)
Encoding:
0|0|1]0(fSZz|1]0]|0O0 d|d|d|d|0O]|s |s |s

byte 3: offset8

SUB [Rd+offset8], Rs

Bytes: 3
Cycles: 6
Operation: ((WS:Rd)+offset8) <-- (WS:Rd)+offset8) - (Rs)
Encoding:
0|0 1] 0(SZz|1]0|0O0 s|{s|s|[s|1|d|d]|d

byte 3: offset8

SUB Rd, [Rs+offset16]

Bytes: 4
Cycles: 6
Operation: (Rd) <-- (Rd) - ((WS:Rs)+offset16)
Encoding:
o(of1(0(SZz|1|0]1 d|d|d|d|O0O|s s |s

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

SUB [Rd+offsetl6], Rs

Bytes: 4
Cycles: 6
Operation: ((WS:Rd)+offset16) <-- (WS:Rd)+offset16) - (Rs)
Encoding:
0| O0[1]0|SZf1]0]1 s|s|s|s|1]|d|d|d

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16

2/23/96 255 Addressing Modes and Data Types

SUB Rd, [Rs+]

Bytes: 2
Cycles: 5
Operation: (Rd) <-- (Rd) - ((WS:Rs))
(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)
Encoding:

0O|0|1]0|SZ|O| 1] 1 d|d|d|d]|O0O|s |s |s

SUB [Rd+], Rs

Bytes: 2
Cycles: 5
Operation: ((WS:RQ)) <-- ((WS:R4)) - (Rs)
(Rd) <-- (Rd) + 1 (byte operation) or 2 (word operation)
Encoding:

ol of1fo0|SZ|0o]| 1] 1 s|s|s|s|1|d|d]|d

SUB direct, Rs

Bytes: 3
Cycles: 4
Operation: (direct) <-- (direct) - (Rs)
Encoding:
oO|O0|1f0|SZ|1]|1]0 s| s| s | s |1 [direct 3bits

byte 3: lower 8 bits of direct

SUB Rd, direct

Bytes: 3
Cycles: 4
Operation: (Rd) <-- (Rd) - (direct)
Encoding:
O| 0| 1[{0|SZz|1]|1]0 d|d|d|d |0 |direct: 3bits

byte 3: lower 8 bits of direct

XA User Guide 256 2/23/96

SUB Rd, #data8

Bytes: 3

Cycles: 3

Operation: (Rd) <-- (Rd) - #data8
Encoding:

110,01 0[O0} 0] 1 d|d|d|d| 0] 0| 1|0
byte 3: #data8

SUB Rd, #datal6

Bytes: 4
Cycles: 3
Operation: (Rd) <-- (Rd) - #datal6
Encoding:
110{0] 1] 1] 0| 0] 1 d|d|d|d]| 0] 0] 1]0

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

SUB [Rd], #data8

Bytes: 3
Cycles: 4
Operation: ((WS:Rd)) <-- (WS:RQ)) - #data8
Encoding:
i]1]0[0|1]0]O0f1]O0 0jd|d|d| 0] 0] 1]0

byte 3: #data8

SUB [Rd], #datal6

Bytes: 4
Cycles: 4
Operation: ((WS:Rd)) <-- ((WS:RQ)) - #datal6
Encoding:
1100111010 0|jd|d|d|o0o]jOof1]0O0

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

2/23/96 257 Addressing Modes and Data Types

SUB [Rd+], #data8

Bytes: 3

Cycles: 5

Operation: ((WS:RAd)) <-- (WS:Rd)) - #data8
(Rd) <-- (Rd) + 1

Encoding:

1]0l0[1]0]0[1]1] JO|d|d|d}| 0] 0] 1]O0
byte 3: #data8

SUB [Rd+], #datal6

Bytes: 4

Cycles: 5

Operation: ((WS:Rd)) <-- (WS:Rd)) - #datal6
(Rd) <-- (Rd) +2

Encoding:

110100 1] 10 1] 1 O(d|d|d|o0o]O0f 1|0

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

SUB [Rd+offset8], #data8

Bytes: 4
Cycles: 6
Operation: ((WS:Rd)+offset8) <-- (WS:Rd)+offset8) - #data8
Encoding:
10,01 0|]1T|0]|O 0| d|d|d| O Of 1| O

byte 3: offset8
byte 4: #data8

SUB [Rd+offset8], #datal6

Bytes: 5
Cycles: 6
Operation: ((WS:Rd)+offset8) <-- (WS:Rd)+offset8) - #datal6
Encoding:
ijolo|y1f1{1{0}|oO0 O d|{d{d|O0j 0| 1f0O0

byte 3: offset8
byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

XA User Guide 258 2/73/9A

SUB [Rd+offset16], #data8

Bytes: 5
Cycles: 6
Operation: ((WS:Rd)+offset16) <-- (WS:Rd)+offset16) - #data8
Encoding:
110 0[1]0]1}0]1 0jd|d|d|O0]O0]1]0

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

SUB [Rd+offsetl16], #datal6

Bytes: 6
Cycles: 6
Operation: ((WS:Rd)+offset16) <-- (WS:Rd)+offset16) - #datal6
Encoding:
10,011} 1]1]0]1 0 d| d| d| O0OfO0}| 1] O

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #datal6
byte 6: lower 8 bits of #datal6

SUB direct, #data8

Bytes: 4
Cycles: 4
Operation: (direct) <-- (direct) - #data8
Encoding:
1100 1]0(1]1]O0 0 |direct:3bits| 0 |0 |1 | O

byte 3: lower 8 bits of direct
byte 4: #data8

SUB direct, #datal6

Bytes: 5
Cycles: 4
Operation: (direct) <-- (direct) - #datal6
Encoding:
1 oo 1| 1|1]1]0 0 |direct:3bits| 0 |0 |1 | O

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

2/23/96 259 Addressing Modes and Data Types

SUBB Subtract with Borrow

Syntax: SUBB dest, src

Operation: dest <- dest - src - C

Description: Performs a twos complement binary addition of the source operand and the
previously generated carry bit (borrow) with the destination operand. The result is stored in the
destination operand.The source data is not affected by the operation.

If the carry from previous operation is zero (C =0, i.e., Borrow = 1), the result is exact difference

of the operands; if it is one (C = 1, i.e., Borrow = 0), the result is 1 less than the difference in
operands.

This form of subtraction is intended to support multiple-precision arithmetic. For this use, the carry
bit is first reset, then SUBB is used to add the portions of the multiple-precision values from least-
significant to most-significant.

Size: Byte-Byte, Word-Word

Flags Updated: C, AC, V,N, Z

SUBB Rd, Rs
Bytes: 2
Cycles: 3
Operation: (Rd) <-- (Rd) - (Rs) - (C)
Encoding:
0| 0] 1] 1{SZ}0| 0|1 d|d|[d|d]| s|s|s|s

SUBB Rd, [Rs]

Bytes: 2
Cycles: 4
Operation: (Rd) <-- (Rd) - (WS:Rs)) - (C)
Encoding:
ofof1|1(Szfo|j1]|o0 d|d|d|[d|[O0O]|s s |s

XA User Guide 260 2/721QA

SUBB [Rd], Rs

Bytes: 2
Cycles: 4
Operation: ((WS:Rd)) <-- (WS:Rd)) - (Rs) - (C)
Encoding:
o|o0| 1] 1|SZ]o0|1]O0 s|s|s|s|1]|d|d]|d

SUBB Rd, [Rs+offset8]

Bytes: 3
Cycles: 6
Operation: (Rd) <-- (Rd) - ((WS:Rs)+offset8) - (C)
Encoding:
oo 1] 1|SZz|]1]|]0]0 d|d|d|[d|O0O]|s |s |s

byte 3: offset8

SUBB [Rd+offset8], Rs

Bytes: 3
Cycles: 6
Operation: ((WS:Rd)+offset) <-- (WS:Rd)+offset8) - (Rs) - (C)
Encoding:
o|0f 1} 1|SZ|1|0]|O s|s|s|s|1|d|jd]|d

byte 3: offset8

SUBB Rd, [Rs+offset16]

Bytes: 4
Cycles: 6
Operation: (Rd) <-- (Rd) - ((WS:Rs)+offset16) - (C)
Encoding:
oO| 0| 1] 1{SZ|1]0]| 1 d{d|d|[d]|O|s s |s

byte 3: upper 8 bits of offsetl6
byte 4: lower 8 bits of offset16

2/23/96 261 Addressing Modes and Data Types

SUBB [Rd+offset16], Rs

Bytes: 4
Cycles: 6
Operation: ((WS:Rd)+offset16) <-- (WS:Rd)+offset16) - (Rs) - (C)
Encoding:

o| 0| 1] 1|SZ{1]0]1 s d|d|d
byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
SUBB Rd, [Rs+]
Bytes: 2
Cycles: 5
Operation: (Rd) <-- (Rd) - (WS:Rs)) - (C)

(Rs) <-- (Rs) + 1 (byte operation) or 2 (word operation)

Encoding:

Ol 0| 1] 1[SZz|0o| 1|1 d s |s |s
SUBB [Rd+], Rs
Bytes: 2
Cycles: 5
Operation: ((WS:Rd)) <-- ((WS:Rd)) - (Rs) - (C)

(Rd) <-- (Rd) + 1 (byte operation) or 2 eration)

Encoding:

O}l 0| 1] 1[SZ|0]| 1|1 s d|d]|d
SUBB direct, Rs
Bytes: 3
Cycles: 4
Operation: (direct) <-- (direct) - (Rs) - (C)
Encoding:

oOfOof1f{1(SZf1|{1]0 s direct: 3 bits

byte 3: lower 8 bits of direct

XA User Guide

262

2/23/96

SUBB Rd, direct

Bytes: 3

Cycles: 4

Operation: (Rd) <-- (Rd) - (direct) - (C)
Encoding:

o(o| 1| 1|SZ|1]|1]0 d|d]|d]|d| O |direct 3bits
byte 3: lower 8 bits of direct

SUBB Rd, #data8

Bytes: 3
Cycles: 3
Operation: (Rd) <-- (Rd) - #data8 - (C)
Encoding:
i1]0[0| 1[0 0| O] 1 d|{d|d|d]| 0] 0] 1]1

byte 3: #data8

SUBB Rd, #datal6

Bytes: 4
Cycles: 3
Operation: (Rd) <-- (Rd) - #datal6 - (C)
Encoding:
1]10(0] 1) 1] 0| 0|1 d|d|[d|d| 0] 0| 1]1

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

SUBB [Rd], #data8

Bytes: 3
Cycles: 4
Operation: ((WS:Rd)) <-- (WS:Rd)) - #data8 - (C)
Encoding:
1] 0f0| 10010 0|d|d|jd]| o] 0] 1]1

byte 3: #data8

273104 7263 Addreccino Mades and Data Tvnes

SUBB [Rd], #datal6

Bytes: 4
Cycles: 4
Operation: ((WS:Rd)) <-- ((WS:RQ)) - #datal6 - (C)
Encoding:
1{0fO0f1f1]011]0 0Ojldjd|d]|] 0] 0} 1|1

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

SUBB [Rd+], #data8

Operation: ((WS:Rd)) <-- (WS:Rd)) - #data8 - (C)
(Rd) <-- (Rd) + 1

byte 3: #data8

SUBB [Rd+], #datal6

Bytes: 4

Cycles: 5

Operation: ((WS:Rd)) <-- ((WS:RQ)) - #datal6 - (C)
(Rd) <-- (Rd) +2

Encoding:

itjoyo0(1}y1j0f1}] 1] |O0|d|d|d|O0O] O] 1|1

byte 3: upper 8 bits of #datal6
byte 4: lower 8 bits of #datal6

SUBB [Rd+offset8], #data8

Bytes: 4
Cycles: 6
Operation: ((WS:Rd)+offset8) <-- (WS:Rd)+offset8) - #data8 - (C)
Encoding:
1100 1{0}1{0]0 0l d|d|d] 0o O] 1] 1

byte 3: offset8
byte 4: #data8

XA User Guide IRA Y

SUBB [Rd+offset8], #datal6

Bytes: 5

Cycles: 6

Operation: ((WS:Rd)+offset8) <-- (WS:Rd)+offset8) - #datal6 - (C)
Encoding:

11001 1{1(0]0 0l d|d|ld| O] Of 1] 1

byte 3: offset8
byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

SUBB [Rd+offset16], #data8

Bytes: 5

Cycles: 6

Operation: ((WS:Rd)+offset16) <-- (WS:Rd)+offset16) - #data8 - (C)
Encoding:

1] 0] 0| 1] 0|1 ([0]1 0Ofd{d{d|f OO 1] 1

byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: #data8

SUBB [Rd+offset16], #datal6

Bytes: 6
Cycles: 6
Operation: ((WS:Rd)+offset16) <-- (WS:Rd)+offset16) - #datal6 - (C)
Encoding:
10|01 1]1|0]1 0| d|{d|{d|O0]O0] 1] 1
byte 3: upper 8 bits of offset16
byte 4: lower 8 bits of offset16
byte 5: upper 8 bits of #datal6
byte 6: lower 8 bits of #datal6
SUBB direct, #data8
Bytes: 4
Cycles: 4
Operation: (direct) <-- (direct) - #data8 - (C)
Encoding:
1 001011 1]1]0 0 |direct: 3bits| 0 | O | 1 | 1

byte 3: lower 8 bits of direct
byte 4: #data8

2/23/96 265 Addressine Modes and Data Tvnes

SUBB direct, #datal6

Bytes: 5
Cycles: 4
Operation: (direct) <-- (direct) - #datal6 - (C)
Encoding:
1 ojof1t1y1j1]11}o0 O |direct: 3bits| 0 | O |1 | 1

byte 3: lower 8 bits of direct
byte 4: upper 8 bits of #datal6
byte 5: lower 8 bits of #datal6

XA User Guide 266 2/73/0A

TRAP Software Trap

Syntax: TRAP #datad

Operation: (PC) <-- (PC) +2
(SSP) <-- (SSP) - 6
((SSP)) <-- (PC)
((SSP)) <-- (PSW)
(PSW) <-- code memory (trap vector (#data4))
(PC.15-0) <-- code memory (trap vector (#data4))
(PC.23-16) <-- 0; (PC.0) <-- 0

Description: Causes the specified software trap. The invoked routine is determined by branching
to the specified vector table entry point. The RETI, return from interrupt, instruction is used to
resume execution after the trap routine has been completed. A trap acts like an immediate interrupt,
using a vector to call one of several pieces of code that will be executed in system mode. This may
be used to obtain system services for application code, such as altering the data segm